Urban Proximity and Farmland Prices: Evidence from the Berlin Brandenburg Metropolitan Region

Luise Meissner, Oliver Musshoff, Wendong Zhang

Assistant Professor, Dyson School of Applied Economics and Management, Cornell University

wendongz@cornell.edu

(607) 254-3231

https://wendongzhang.weebly.com/

NC-1177 Conference, Atlanta, GA, October 12, 2023

Leibniz Centre for Agricultural Landscape Research (ZALF)

Dyson Cornell SC Johnson College of Business

Motivation

- Urban proximity has been identified as one of the strongest non-agricultural price determinants for farmland prices
 - Think German economist John von Thünen's (1826) work: the Isolated State 1st treatment of spatial economics & economic geography & economics of rent
 - Formal analysis of urban influences in European farmland market is scarce
- Migration into cities, in part fueled by immigration, is a global phenemonon.
- Berlin is one of the most populous European cities, and is growing

March 23, 2023 | 05:59

Research Question

- How does urban proximity affect farmland prices in the Berlin Brandenburg Metropolitan Area?
- We <u>hypothesize</u> that the effects could be potentially nonlinear with much stronger effects near the city centers
- It could reflect the higher option value of future urban development potential
- Brandenburg is especially suitable as a study region, due to the contrast between Berlin as an urban area and the low population density in Brandenburg

Data

<u>Source</u>: Oberer Gutachterausschuss Brandenburg (Upper Expert Land Valuation Committee Brandenburg)

The universe of 45,889 Farmland **sale transactions** of grassland and arable land from 1994 – 2021

Include both cropland and grassland sales

Smallest geographical level: Municipality identifiers

Number of arable land transactions in Brandenburg, 1994 - 2021

Summary of land transactions by county

		Average Distance in km		Average price in	Number of sales
County Name	Region	to Berlin center	Average soil quality	euros/hectare	
Barnim	northeast	58	30.91	6,870.83	1,277
Dahme-Spreewald	southeast	91	28.85	4,931.77	1,506
Elbe-Elster	south	148	31.69	3,387.19	2,091
Havelland	northwest	88	34.23	5,924.24	1,996
Märkisch-Oderland	northeast	70	39.99	6,306.25	5,250
Oberhavel	northwest	35	28.03	5,324.30	742
Oberspreewald-Lausitz	south	138	29.29	3,589.37	1,860
Oder-Spree	southeast	91	30.03	4,389.65	2,080
Ostpriegnitz-Ruppin	northwest	79	30.04	6,808.45	1,798
Potsdam-Mittelmark	southwest	89	29.58	5,821.24	2,943
Priegnitz	north	89	33.13	6,373.41	2,821
Spree-Neisse	south	204	31.39	4,186.86	1,538
Teltow-Fläming	southwest	78	28.14	4,171.54	4,034
Uckermark	northeast	107	38.65	9,722.54	2,152
AVERAGE	-	98.15	31.71	5,557.69	2,292

Conceptual Framework

• Framework includes the option value of land use conversion

$$V_{ict} = \sum_{s=t}^{t*} \frac{R_A(A_{is})}{(1+\theta)^{s-t}} + \sum_{s=t*}^{\infty} \frac{R_U(U_{is})}{(1+\theta)^{s-t}}, t \in [0, t^*]$$

- t^* as the optimal land use conversion point in time (from agricultural use to developing land)
- R_A are the returns from agricultural usage
- R_U are net returns from developing land after conversion costs
- *A_{is}* describe agricultural variables
- *U*_{is} are nonagricultural variables, primarily due to urban proximity

Measures of urban proximity

- Nearest distance from parcel to Berlin center
 - Road distance in kilometers measured using Google Maps
 - Travel time in minutes measured using Google Maps
- Nearest distance from parcel to Berlin MSA city edge
 - Road distance in km
 - Travel time in minutes
- Distance bands
 - Dummies for 0-20km, 20-40km, 80-100km band

Hedonic price regressions

• Base model:

$$P_{ict} = \beta_{0it} + \beta_{1it} distance_{it} + \beta_{2it} A_{it} + \beta_{5it} population density + \beta_{6it} price index + \beta_{7it} D_{it}^{buyer type} + \beta_{8it} number of train stations + \sum_{j=1994}^{2019} \gamma_t + \sum_{j=2}^{14} \delta_c + e_{it}$$

 β are the regression coefficients, A_{it} is a vector of agricultural price determinants, γ_t are the coefficients for the year dummies and δ_c are the coefficients for the location dummies

• Distance bands that allow for nonlinear effects of urban proximity over space and time

$$P_{ict}$$

$$= \beta_{0it} + \beta_{1it} dist - bins_{it} \left(\sum_{j=2}^{7} \alpha_k D_{it}^{distance} \right) + \beta_{2it} dist_bins_{it} * post_08_{it} + \beta_{3it} Ait + \beta_{4it} U_{it}$$

$$+ \sum_{j=1994}^{2019} \gamma_t + \sum_{j=2}^{14} \delta_c + e_{it}$$

Results – spatial extent of urban influence arable land/cropland vs. Grassland 70-80km vs. 40km

In percentage terms using log(P), the premium is 45% for parcels within 20km from Berlin relative to 130km away The premium drops to 10% for parcels 75km away

Results on time-varying changes

Distance coefficients x post 08

- Is urban influence different following 2008 financial crisis?
 - No effect for grassland
 - 0-20km close to Berlin is no longer as great
 - Still dominated by a urban premium story

Robustness check - specification charts for $\beta(dist_{it})$ – euro/acre effect for every km away from Berlin center

Robustness check - specification charts for $\beta(dist_{it})$ – euro/acre effect for every km away from Berlin center

Future work – sources of heterogeneity

Speckgürtel

Bacon Belt – suburban sprawl

Future work – sources of heterogeneity

Future work: influences of multiple urban centers?

E.g., interactions with within close proximity to 2 or more cities with >100,000 people

Conclusion and Discussion

- Our study provides the first micro-level quantification of the influences of urban proximity to a major urban center on nearby farmland prices in a German context.
 - farmland prices are 10-15 € per hectare less expensive as the farmland parcel moves one kilometer away from the city center of Berlin.
 - The effects exhibit a distance decaying effect and extends to 70-80km for arable land, with a sharp drop at 40km
 - The effects of urban influences on grassland sales prices are much smaller

Thank you!

Wendong Zhang wendongz@cornell.edu

https://wendongzhang.weebly.com/

Dyson Cornell SC Johnson College of Business