The Economics of Technology Adoption for Fruit and Vegetable Growers

Wendong Zhang

Assistant Professor, Dyson School of Applied Economics and Management, Cornell University;

wendongz@cornell.edu

(607) 254-3231

https://wendongzhang.weebly.com/

January 20, 2022

Dyson School 2023 Agricultural and Food Business Outlook Conference

Research & Extension Program Themes

- Theme I: Agriculture & the Environment; Grower Decision Making
- Theme II: Land Value, Land Ownership, Land Tenure, Land Use
- Theme III: Chinese Agriculture & its Global Trade Implications
- Other Useful information:
 - Appointment: 50% Research & 50% Extension
 - Joined Cornell Dyson School & Cornell Cooperative Extension in July 2022 Faculty Affiliate, Cornell Institute for China Economic Research (CICER) Faculty Fellow, Cornell Atkinson Center for a Sustainable Future
 - Led Iowa land value survey; co-founded the ISU China Ag Center

New Projects in New York State

- Ag & Solar; Agrivoltaics (joint with David Kay and Rich Stedman)
- Floodplain paddy rice farming (joint with Jenny Kao-Kniffin and Susan McCouch)
- $_{\odot}$ Carbon credits for dairy farmers (joint with Chris Wolf)
- US Northeast Land Value & Rent Trends (joint with ASFMRA Northeast Chapter)

Story #1: Mesotunnels for Organic Cucurbit Production in New York, Kentucky and Ohio

https://www.cucurbit.plantpath.iastate.edu/ USDA NIFA OREI Project

Collaborators: Sarah Pethybridge (Cornell AgriTech), David Gonthier (U Kentucky), Mark Gleason (Iowa St)

WHAT ARE MESOTUNNELS?

Nylon fine-mesh covers

Mesotunnel protection system

Kentucky Pollination treatments during flowering

On-off-on strategy

Open-ends strategy

Full-season, with commercial bumble bees

Mesotunnels increase marketable yield by 30% in University of Kentucky trials

Fiske, Bessin, Williams, Gonthier. In prep.

Costs of mesotunnel vs organic pesticide management Kentucky – acorn squash

	ltems	Contro		Only	Spray	Onl ^y Mes	y sotunnel	Me + Sp	sotunnel oray
	Mesotunnel	\$	-	\$	-	\$	3,153	\$	3,153
Materials (\$)	Insecticide spray	\$	-	\$	2,661	\$	-	\$	2,605
	Other	\$	144	\$	144	\$	144	\$	144
	Mesotunnel		C		C		7173		7173
Labor (min)	Insecticide spray		C		4658		0	ļ	3105
	Other		1672		1672		1672		1672
Total Material Cost (\$)		\$	144	\$	2 <i>,</i> 805	\$	3,296	\$	5,902
Total Labor Cost (\$)		\$	324	\$	1,556	\$	1,815	\$	2,746
Total Cost (\$)		\$	326	\$	4,361	\$	5,111	\$	8,648

*Preliminary results, not all field prep costs included, some costs are annualized

Mesotunnel profitability – acorn squash

1-Acre	Co	ntrol	Spray only		Meso- tunnel		Meso- tunnel +spray	
Selling Price (\$/lb)	\$	1.77	\$	1.77	\$	1.77	\$	1.77
Total Cost (\$)	\$	326	\$	4,361	\$	5,111	\$	8,648
Revenue (\$)	\$	18,234	\$	15,926	\$	25,073	\$	24,744
Profit (\$)	\$	17,908	\$	11,565	\$	19,962	\$	16,096

NY AgriTech Pollination Trials 2022 Muskmelon Yield Results

Marketable Fruit	On/Off/On	Open Ends	Full Season Mesotunnel with Bumblebee Hive
Number of marketable fruit (both harvests)	<mark>167.8</mark>	20.0	19.8
Total marketable fruit weight (both harvests; lb.)	<mark>862</mark>	115	117

Kellie Damann and Sarah Pethybridge

New York AgriTech Pollination Trials

Just having bumblebee hive is not enough – needs other pollinators

Variables	On/Off/On	Open Ends	Bumblebee	LSD	P =
			Hive		
Week 4					
Bumblebees	<mark>2.3 a</mark>	0 b	<mark>3.5 a</mark>	2.4	0.031
Hoverflies	4.3	0.3	1.8	-	0.136 (ns)
Other bees	<mark>4.5 a</mark>	0.3 b	0.3 b	3.4	0.032
Other pollinators	<mark>3.5 a</mark>	0 b	0 b	2.4	0.017
Pollinators on the flowers	<mark>6 a</mark>	0 b	2 b	3.5	0.014
Flower number	<mark>535 a</mark>	448 ab	335 b	123.4	0.021
Week 5					
Bumblebees	6.2	1.3	7.5	_	0.375 (ns)
Hoverflies	<mark>29 a</mark>	4.3 b	3 b	7.1	< 0.001
Other bees	<mark>43.2 a</mark>	6.8 b	0.5 b	16.3	0.001
Other pollinators	<mark>21.8 a</mark>	3.8 b	0.3 b	8.7	0.002
Pollinators on the flowers	<mark>43.8 a</mark>	6.2 b	5.5 b	17.9	0.003
Flower number	876	734	730	_	0.093 (ns)

Story #2: Intelligent Sprayers for Apple Orchards in Ohio and Iowa

https://www.smartapplespray. plantpath.iastate.edu/

USDA NIFA – CPPM Project

Collaborators: Heping Zhu (USDA-ARS), Melanie Ivey (Ohio St), Mark Gleason (Iowa St)

Airblast sprayer – the standard since 1950s

Positives:

- Effective against pests and diseases.
- Technology is familiar.

Negatives:

- Prone to spray drift.
- Much of the spray misses target.

Laser-guided intelligent sprayer technology

An advanced and affordable spray system that avoids the orchard sprayer calibration and minimizes human involvements in spray volume decisions

Inventor: Dr. Heping Zhu, USDA ARS, Wooster, OH

Commercially available at Smart Apply, Inc. in Indianapolis, IN

https://youtu.be/f0h7KbR3X-4 https://smartapply.com/videos/

USDA United States Department of Agriculture Agricultural Research Service

SAVINGS in Iowa field trials, 2020-2022

Intelligent Sprayer save refilling trips

- Cover 30-50% more orchard with the same spray volume.
- •Less drift
- Less labor costs

Spray Coverage (2021)

Intelligent (0.06 fl oz/ft3) 3% **Equivalent coverage Standard** Intelligent (0.09 fl oz/ft3) (100 gal/A) 25% 25%

What about pest and disease control?

Iowa: equivalent control in 3 dry years

UGA1436073

Ohio commercial orchard: equivalent control for 3 years

Dr. Mark Gleason leads investigations of intelligent sprayers to apply pesticides in apple orchards for IPM programs

Project's objectives are:

- Assess combining Intelligent Sprayer technology with warning systems for fire blight and summer diseases to achieve season-long pest and disease management of apples.
- Compare economic profitability and cost effectiveness of using the Intelligent Sprayer with disease-warning systems to current practices for control of apple diseases and arthropod pests.
- Share the projects' advances with apple growers in the eastern half of the U.S. through diverse outreach approaches and an IPM Information Portal.

https://www.smartap plespray.plantpath.ia state.edu/

Welcome to SmarterAppleSpraying!

This 3-year (2020-2022) project, involving Iowa State University, The Ohio State University, and USDA-ARS, is funded by USDA's Crop Protection and Pest Management (CPPM) Program.

Recent Blog Posts

Pesticide spray coverage: searching for the Goldilocks zone

Story #3: Vegetable Production in My Hometown in China

Food Production in China, 2018

Food Categories

Grain Vegetables Fruits Aquatic Products Meat, Milk, and Eggs

Agricultural transformation in my hometown

Greenhouse – plastic film - Shandong Province

2023**CHINESE** NEW YEAR

YEAR OF THE RABBIT

Years of the Rabbit include 2023, 2011, 1999, 1987, 1975, 1963, 1951, 1939, 1927

New Year starts on Jan 22nd, 2023 Thank you!

Wendong Zhang wendongz@cornell.edu

https://wendongzhang.weebly.com/

Dyson Cornell SC Johnson College of Business