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Disamenity or Premium: Do Electricity Transmission Lines

Affect Farmland Values and Housing Prices Differently?

Abstract: A substantial increase in electricity demand has triggered a rising investment in energy

infrastructure in the U.S. over the last decade. This paper examines the capitalization effects of

electricity transmission lines (TMLs) on nearby farmland values and housing prices in the Midwest

from 2015 to 2019, based on 16,026 parcel-level farmland sales data from FarmlandFinder and

1,905,280 housing transaction data from the Zillow Transaction and Assessment Dataset database.

Our estimation results reaffirm the disamenity effects of TMLs on housing property values and find

that the disamenity effects are larger on houses in urban areas than in rural areas. Nearby TMLs

generate premiums for surrounding farmland, which contrasts with the disamenity evidence due to

aesthetics (either visual or audible) in the literature. We further show that farmland parcels within

0-2 km of TMLs in high-wind areas are approximately 3.10% more expensive than comparable

parcels in low-wind areas. Our paper provides novel and contrarian evidence on the effects of TMLs

on property values amid rising investment in energy infrastructure.

Keywords: Transmission lines (TMLs), Property values, Wind resources, Disamenity, Option

values

JEL Codes: Q15, R14, R31
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1 Introduction

A reliable electric transmission grid is critical for a renewable and low-carbon energy future in the

U.S.(Perera et al., 2020; Sugimoto, 2021). New investments in transmission lines (TMLs), especially

in rural America (The White House, 2021), generate renewed interest in the impacts of TMLs

on nearby residential and agricultural properties. Previous studies have provided extensive and

consistent evidence of disamenity effects of TMLs on nearby residential housing prices (Priestley

and Evans, 1996; Hamilton and Schwann, 1995; François, 2002; Chalmers and Voorvaart, 2009;

Jackson and Pitts, 2010), leading to 5% to 20% price declines. Visual aesthetics deterioration,

possible health risks and safety hazards, and impacts on culture are often cited as reasons.

The literature on the impacts on farmland values of TMLs is limited, inconclusive, and mostly

outdated. Existing literature suggests null effects from TMLs on farmland values in the U.S. (Brown,

1976; Jackson, 2010; Jackson and Pitts, 2010). Sardaro et al. (2018) find that the overhead TMLs

depressed nearby farmland values in Italy due to concerns about low TMLs disrupting agricultural

production and fewer production acres converted to TML buffer zones. On the other hand, a recent

study shows that proximity to TMLs for farmland parcels is positively valued after the construction

of utility-scale solar facilities (Abashidze and Taylor, 2022). This could be because renewable energy

facilities are typically located on land close to TMLs to conveniently connect to the existing grid and

thus reduce the startup cost (Lamy et al., 2016; Pechan, 2017; Deng et al., 2022). This is consistent

with the evidence of large wind lease payments to landowners (Mcelroy, 2020). In addition, TMLs

could facilitate the adoption of precision agriculture equipment that requires electricity (Mitra

et al., 2022), and can improve quality of life by enabling telemedicine, virtual communications,

and remote work. In sum, more research is needed to pin down the impacts of TMLs on nearby

farmland values. In particular, we will examine whether TMLs’ disamenity effects discovered in

the residential housing market would apply to farmland prices and whether proximity to TMLs

facilitates energy infrastructure investments.

This paper examines the capitalization effects of TMLs on nearby farmland and housing values in

the U.S. Midwest, focusing on (i) how the TMLs impact nearby farmland prices and housing property

values with rapid renewable energy development, and (ii) whether the growing demand for renewable
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energy challenges the conventional wisdom that TMLs are disamenities. This research is based

on 16,026 arm’s length farmland sales data from a startup company called FarmlandFinder1 and

1,905,280 single-family housing transaction data from the ZTRAX/Zillow database in 12 Midwestern

states from 2016 to 2019. We focus on the Midwest for its abundant wind resources, and wind energy

accounted for the largest share (42.4%) of renewable energy in 2020 (U.S. Energy Information

Administration, 2021). Also, due to the high electricity demand in the coastal areas, there is a high

demand for electricity transportation via TMLs.

The availability of comprehensive and up-to-date data from ZTRAX/Zillow and FarmlandFinder

is instrumental in exploring our research question, as it provides unique advantages compared to

other data sources. First, Zillow stands out as the most extensive and accessible platform for

housing market data, offering a comprehensive dataset that includes housing price and transaction

information. This wealth of data, which is not easily obtainable from other sources, allows for a

thorough analysis of housing prices and transactions, enabling us to capture a more accurate and

nuanced understanding of the market dynamics. Second, previous studies on the farmland market

often relied on survey data or transactions limited to a specific state, resulting in a fragmented and

limited view of the market. However, our database incorporates arm’s length transactions from 12

core agricultural states, covering a wider geographical scope. This regional coverage enables a more

accurate and robust depiction of the farmland market, surpassing the limitations of previous studies

and providing a more comprehensive assessment of the factors influencing regional farmland prices

and transactions.

We rely on the hedonic house price regressions as our main empirical models. We run separate

regressions to quantify the capitalization effects of proximity to TMLs on nearby farmland values

and housing prices. Moreover, we add an interaction term of proximity to TMLs with measures

for wind resources to examine the premium of being close to a TML and in a high-wind area to

explore the possible treatment effect mechanism. Finally, we explore heterogeneities by comparing

estimates across whether in urban counties/areas, whether there are two or more TMLs, and across

different subsamples. We reaffirm disamenity effects of TMLs on housing property values. Housing

prices decline by 2.74% on average for every 1 km closer to the nearest TML, and the disamenity

1FarmlandFinder is now acquired by Growers Edge, and rebranded as https://app.range.ag.
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effects are stronger in urban areas. We further show that the higher wind resources in the farmland

market at least partially drive the price premiums, as they offset or even reverse the disamenity

effect. In particular, for farmland parcels with TMLs in the range of 0-2 km, the prices of those

farmlands in high-wind areas are 3.10% higher than comparable parcels in low-wind areas. Our

heterogeneity analyses reveal that the premium is larger for Great Plain states’ farmland where

energy infrastructure investment is higher. The disamenity effects for housing prices in I-states and

Lakes states with more natural amenities are stronger.

This research contributes to the literature in two ways. First, we provide novel and contrar-

ian evidence regarding the differential effects of TMLs on farmland values and residential housing

prices. Our results show that close proximity to TMLs yields positive premiums for nearby farmland

parcels, different from the null or negative capitalization effects of TML. We also confirm the TMLs’

disamenity effects on residential housing prices, and this disamenity effect is larger for urban houses

than rural houses. Second, we firstly demonstrate TMLs have a synergy with local wind resources

on farmland values, consistent with recent findings on the capitalization effects of renewable energy

(Abashidze and Taylor, 2022). Overall, this article demonstrates the capitalization effects of TMLs

amid rising investment in renewable energy infrastructure, and reveals important trade-offs that

owners of different types of properties face in urban or rural areas when siting TMLs.

This paper is structured as follows. Section 2 provides an overview of the data sources, while

Section 3 outlines the empirical model. Section 4 presents the empirical results, and Section 5 dis-

cusses the findings from the heterogeneity and robustness checks. Finally, the last section concludes

the paper.

2 Data Description

We compiled multiple datasets to generate the farmland and housing property datasets for regression

analyses. The farmland dataset includes 16,026 farmland sales from 2016 to 2019 in 12 Midwestern

states, measures of TMLs influences, land characteristics, and proximity to urban areas and other

infrastructure and facilities.2 The housing property dataset covers 1,905,280 single-family housing

2The farmland sales data are limited to 2016-2019 because the Farmlandfinder company was established in 2016.
Farmland data prior to 2016 are not available. Using a relatively short sample period has certain advantages (Kuminoff
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sales from 2015 to 2019 in the same 12 states in the Midwest, and other variables such as TML

measures, housing characteristics, and location. Below we explain each dataset and the merging

process in detail.

2.1 Farmland data

We obtained farmland value data from FarmlandFinder, a start-up company (since acquired by

Growers Edge) that scrapes thousands of auction and real estate companies’ sites for land sales

information. The data include the land parcel characteristics as well as landowner information;

its main function is to facilitate transactions involving absentee landowners. In addition to the

detailed information on farmland centroid location, acreage, and transaction date, the dataset

also provides information on sales history, soil survey results, crop history, etc. A screenshot of

the website interface is provided in Figure A1 to illustrate how the land value and other related

information of each parcel is displayed. FarmlandFinder offers both auction data (including both

public auction and seal-bid auction) and real estate listing data; these two types of data account

for more than two-thirds of all arm’s length farmland transactions (Zhang, 2016). The farmland

value data cover 12 Midwestern states including North Dakota, South Dakota, Wisconsin, Michigan,

Indiana, Ohio, Iowa, Illinois, Kansas, Nebraska, Missouri, and Minnesota. The distribution of arm’s

length farmland transactions is shown in Panel A of Figure 1.

The summary statistics for variables used in the farmland value analysis are presented in Panel

A of Table 1. The transaction price ranges between $520/acre and $28,500/acre with a mean

$5,668/acre.3 The average distance from the farmland boundary to the nearest TML is 3.66 km

with the minimum close to zero and the maximum at 11.00 km.4 Approximately 38% of farmlands

are situated within 0-2 km of their nearest TML, while approximately 33% and 18% of these

farmlands have their closest TML located in the distance bands of 2-5 km and 5-8 km, respectively.

The remaining 11% of farmlands have their nearest TML within the range of 8-11 km. Around 28%

of farmland parcels are in the high-wind region and the other 72% are in the low-wind region based

et al., 2010; Bishop et al., 2020) since the hedonic equilibrium may evolve over time due to changes in macroeconomic
factors that influence homebuyers’ willingness to pay for amenities over a long time period. The housing transaction
data follows a similar time window for consistency.

3These numbers are in real terms based on the first year of each dataset.
4We excluded the observations with the nearest TML out of 11 km due to the identified extent of TMLs on

farmland values in Section 3.1. We thank the Editor for this valuable suggestion.
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on the 7 m/s cutoff (Xu and Zha, 2021).5 For the farmland-related characteristics, the average

farmland area is 127 acres and almost 77% are tillable lands. Almost a quarter (23%) of farmland

parcels in the sample consist of prime land, with an average of 12% loam soil. The average land

slope is 7.95 degrees. In addition, more than half of the farmland parcels are in urban areas and the

average population size is around 61,000. The average distance from the farmland to the highway,

railway, waterbody, biodiesel, and grain warehouse ranges from 0.39 to 10.88 km. We construct

a dummy variable to capture whether there are two or more TMLs within each distance band for

each farmland parcel. We find that 20% of the farmlands are close to two or more TMLs within 2

km, while 36% and 47% of the farmlands are close to two or more TMLs in the distance band 2-5

km and 5-8 km, respectively.

2.2 Housing data

The house transaction data were compiled from the ZTRAX database. The ZTRAX database

contains almost 2.5 million transactions across 12 U.S. states from 2015 to 2019. Panel B of Figure 1

shows the distribution of houses in the 12 states. In addition to detailed information on the sales

amount and the date of transaction, the housing dataset includes house structural characteristics,

such as the year of build, lot size, the number of bathrooms, the number of bedrooms, the number

of stories, and the number of full baths.

In the data cleaning process, we remove transactions with sale prices lower than $1,000, as well

as those in the top 1% of prices. We only use single-family house transactions and deflate the sale

prices to 2000 dollars using the Federal Housing Finance Agency’s (FHFA) state-quarter house price

index.6 Properties with lot sizes below 1,000 square feet and those in the top 1% are also excluded.

Moreover, we exclude houses with an unusually large number of house characteristics. Specifically,

we remove houses with less than 0.5 stories (7,947 observations) or more than 5 stories (1,016

observations). Additionally, we exclude properties with a total number of rooms exceeding 14 (2,457

observations) or more than 8 bedrooms (246 observations) or 4 bathrooms (6,210 observations).

Notably, our main results remain robust even when we retain these extreme value observations.

5Further justifications for selecting a 7 m/s cutoff are provided in Section 4.1.
6More details see https://www.fhfa.gov/.
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The housing dataset includes a large portion of missing values for house characteristics. Table B1

shows the missing percentage for housing characteristics; for example, the number of total rooms

is missing for approximately 51% of the observations. Table B2 indicates the number of block

groups and census tracts with the corresponding housing characteristics missing and shows that the

number of total rooms is missing more frequently on both block group and census tract levels. When

categorized by states, Michigan has the largest number of missing values, followed by Wisconsin,

Illinois, Ohio, Minnesota, Nebraska, Iowa, Missouri, North Dakota, Indiana, South Dakota, and

Kansas. Using observations with all house characteristics available shrinks the sample size from

1.9 million to around 0.8 million (see Column (7) in Table B3), which significantly reduces the

representativeness of our analysis if the housing characteristic information is not missing at random.7

Indeed, many characteristics are missing in a whole census tract or block group.

To mitigate the missing value concern, we apply an imputation method that involves averaging

the house characteristics at a higher geographic level to impute. For example, if the block level

information is missing, we use the census average to impute the missing block level variables; if the

census tract level information is missing, we impute it using the county average. Table B1 indicates

that imputation does not result in a significant difference of means between covariates, reinforcing

the reliability of our imputation method.

There are 1,905,280 house transactions in the merged housing value dataset. The summary

statistics for variables used in analyses of the housing property prices are presented in Panel B of

Table 1. The average transaction price is $181,680 with a minimum of $1,000 and a maximum

of $1,900,000. The mean of the distance to the nearest TML is around 1.2 km.8 Approximately

24% of houses are situated within the distance band of 0-0.5 km from their nearest TML, while

approximately 23%, 19%, and 15% of these houses have their nearest TML located in the distance

bands of 0.5-1 km, 1-1.5 km, and 1.5-2 km, respectively. The remaining 19% of houses have their

nearest TML within the range of 2-3 km. The percentage of houses in the high-wind regions is

around 8%. Approximately 84% of houses are in the urban areas. The average age of the properties

7We also provide a robustness check in the appendix to show the results of using the data without imputation.
Table B3 Columns (7)-(9) show that the coefficients of all pooled, urban, and rural samples are not obviously different
as after imputation, an indication of the reliability of our imputation procedures.

8Similar to the “Farmland data” section, we excluded the observations with the nearest TML out of 3 km due to
the identified extent of TMLs on farmland values in Section 3.1.
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is 55.48 years. The average lot size is approximately 43,57 square feet. The properties have an

average of 1.39 stories, 4.99 total rooms, 2.84 total bedrooms, and 1.51 full baths. We construct a

dummy variable to present if there are two or more TMLs within each distance band for each house.

Our results suggest that only 16% of the houses are close to two or more TMLs within 0.5 km; this

figure is 15%, 24%, and 28%, for the distance band 0.5-1 km, 1-1.5 km, and 1.5-2 km, respectively.

2.3 TMLs data

To construct the proximity of properties to TMLs, we obtained publicly available shapefiles of

TMLs from the U.S. Department of Homeland Security’s Homeland Infrastructure Foundation-

Level Data (HIFLD), which includes detailed information on TML location, voltage, whether the

line is overhead or not, and the line owner. The exact locations of farmland centroids, houses, and

TMLs allow us to calculate the distance from each farmland parcel and house to the nearest TML,

respectively.9

2.4 Supplementary data

The wind speed data is compiled from the National Renewable Energy Lab, which provides the

annual average wind speed at a 100-meter altitude above sea level for each 2-km × 2-km grid cell

in the continental U.S. for the years 2007-2013. According to Xu and Zha (2021), experimental

data indicates that seven meters per second (7 m/s) wind speed achieves optimal efficiency. To

test whether the cutoff value is consistent with real-world scenarios, we overlap the distribution of

wind turbines and the wind speed in the U.S. in Figure 2, where most of the wind turbines are

constructed in areas with wind speeds higher than 7 m/s. Thus, we define 7 m/s as the cutoff

value in the baseline analysis. Regions with an average wind speed higher than 7 m/s are defined

as having abundant wind resources.

We match farmland location to the nearest wind speed grid and use the nearest wind speed as

the speed of the farmland. Since the wind speed resolution is 2-km by 2-km, a larger farmland (i.e.

farmland area is over 4 square kilometers) may be matched to different wind speed grids.10

9This dataset was accessed through https://hifld-geoplatform.opendata.arcgis.com/datasets/

electric-power-transmission-lines; we last accessed it in December, 2021.
10Similarly, we also match the houses to the nearest wind speed grid and use 7 m/s as the cutoff to assign houses
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Farmland characteristics were obtained from several different datasets. Soil texture variables

and proportion of prime land come from the Soil Survey Spatial Data (SSURGO). Specifically, the

farmland suitable for field crops is prime land. We obtained the average land slope and National

Commodity Crop Productivity Index (NCCPI) from the USDA Natural Resources Conservation

Service. The NCCPI is used to measure the potential inherent productivity of soil. Higher NCCPI

values indicate the innate ability of soil, landscape, and climate conditions to foster higher crop

productivity. Based on these datasets, we use ArcGIS to match these attributes to each farmland

parcel.

We use two variables to measure the urban influences, including (i) whether the farmland is in

an urban area, which captures the future rent due to urban development; and (ii) the population

of the nearby urban areas, which captures the option value from the transition from farmland

to urban utilization. Note that we have used the National Center for Health Statistics’ urban-

rural classification scheme for counties provided in 2013 for the farmland value analysis.11 This

classification system categorizes U.S. counties and county-equivalent entities into six levels of urban-

rural classification, including large central metro, large fringe metro, medium metro, small metro,

micropolitan, and non-core. The first five categories are considered urban counties, while the last

category is designated as rural counties. The spatial distribution of these two urban and rural

classifications are shown in Figure A2.

We calculate the distance variables from each farmland to the nearest biodiesel plant, waterbody,

railway, and highways in ArcGIS using Census Bureau TigerLine datasets.12 Distances to the

nearest highway and the railway station are included to control for additional values conferred by

the convenience for transporting agricultural goods. Distances to other agricultural facilities such

as grain warehouses and biodiesel are also included to measure the value of accessing these facilities.

Distance to the waterbody captures the capitalization effects of irrigation.

into either high-wind or low-wind areas.
11It could be found at https://www.cdc.gov/nchs/data_access/urban_rural.htm.
12The data link is https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.

html.
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3 Empirical Models

To explore the capitalization effects of TMLs on property values, we adopt a hedonic regression

model to estimate the influence of transmission lines by primarily using the proximity of farmland

parcel or house to the nearest TML. The hedonic pricing model developed by (Rosen, 1974) is

one of the most used revealed-preference approaches to value owners’ willingness to pay for housing

characteristics, environmental amenities, and other neighborhood attributes (Murphy, 2018; Bishop

et al., 2020; Koster and Pinchbeck, 2022). We first identify the spatial extent of TMLs impacts and

then apply two separate regression models to examine the effects of transmission lines on farmland

and housing property values.

3.1 Identifying the spatial extent of TML influences on property values

Before measuring the impacts of proximity to TMLs on farmland values and housing prices, we

first identify the spatial extent of TML influences on these two types of property values based on

a data-driven approach. This helps guide our sample selection for estimation in Section 3.2 and

Section 3.3.

In the farmland value analysis, we introduced a sequence of distance bands spanning up to

11 km with a 1 km increment (i.e., 0-1 km, 1-2 km, 2-3 km, · · · , 10-11 km) to explore at which

distance TMLs’ influence disappear.13 The base group is the distance band that goes beyond 11

km. Binary variables were constructed to indicate the proximity of farmland to TMLs, categorized

by distance bands. For instance, if the nearest TML distance falls within the 1 km range, the

corresponding binary variable for the 0-1 km interval assumes a value of 1, and 0 for other distance

bands. Regression analyses were performed on these distance bands to identify the point at which

the estimated coefficient loses statistical significance. The effects of proximity to TMLs on farmland

values display a nonlinear trend as indicated in Panel A of Figure 3, which suggests that the positive

impact weakens as the distance to the nearest TML increases, and vanishes once the distance

surpasses 8 km.

13For all distance bands, note that the lower bound is inclusive, while the upper bound is exclusive. To illustrate,
this convention is exemplified by intervals such as [0, 1), [1, 2), and [10, 11). The same principle applies to the
intervals below.
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Similarly, the effect of proximity to TMLs on housing prices can exhibit a non-linear pattern

and may disappear beyond a certain distance threshold. We incorporated a set of distance bands

within 3 km at a 0.5 km increment (e.g., 0-0.5 km, 0.5-1 km, · · · , and 2.5-3 km), and the base

group is the distance band that goes beyond 3 km. Similarly, if the distance to the nearest TML

falls within the range of 0.5-1 km, the dummy variable corresponding to the 0.5-1 km interval is

assigned a value of 1, while the dummy variables for other distance intervals are set to 0. We then

analyzed the point at which the estimated coefficient becomes statistically insignificant. We found

that a closer distance band has a more pronounced negative impact on housing values in Panel B

of Figure 3. Compared to distance bands beyond 3 km, TMLs located within a 0.5 km radius of

houses were associated with a significant devaluation of housing prices. The impact diminished and

then became near-zero and statistically insignificant as the distance bands increased after 1.5-2 km.

Our results demonstrate a nonlinear relationship between proximity to TMLs and housing prices,

highlighting the importance of considering distance thresholds in understanding the effects of TMLs

on the housing market. Below we introduce the farm value and housing value model and explain

how we specify proximity to TMLs based on the thresholds we identified above.

3.2 Farmland value model

To explore the effects of proximity to TMLs on farmland values, we use a parcel-level dataset to

investigate this research question and index farmland parcel by i and year by t. The outcome

variable is the log of farmland sales price per acre, Fit. The explanatory variable lineit represents

the exposure to the TMLs, measured by the distance from farmland parcel boundary to the nearest

transmission line in km in the baseline analysis. We restrict the farmland sampe to those with the

nearest TML in the radius of 11 km based on the results in Panel A of Figure 3. The baseline model

that estimates effects of TMLs on farmland values is specified as follows:

log (Fit) = α0 + α1lineit +Xiγ + δc + ϕt + εit (1)

where δc represents county fixed effects and ϕt stands for year fixed effects. We also use an alter-

native TML measure with a binary dummy indicating whether TMLs cross farmlands. The vector
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Xi controls for a series of variables that might influence farmland values, including (i) farmland

locations: distance to the nearest highway, railway, waterbody, biodiesel, and grain warehouses;

(ii) farmland quality: land percentage tillable, average NCCPI for agriculture, percentage of prime

farmland; (iii) farmland characteristics: gross acres, average slope, percentage of clay/silt/loam;

and (iv) urban influence: whether in the urban area and population size in urban areas.

In the farmland value regression, we control county fixed effects δc to control for time-invariant

unobservables that vary between counties, and year fixed effects ϕt to capture price variations over

years. The farmland market is a tight market with limited transactions (Zhang, 2016). In our

dataset, across all 12 states, the average annual count of farmland transactions per census tract is

around 5. Consequently, to allow enough within variations after fixed effects controls, we employ

county fixed effects instead of census tract fixed effects in our estimation. εit is the error term.

The standard errors are clustered at the county level to account for the potential spatial correlation

between farmland parcels within one county.

Imposing a linear specification can be misleading considering that the impacts of proximity to

TMLs decay as the distance to the nearest TML increases. Based on the results of Panel A of

Figure 3, we use the distance bands of 0-2 km, 2-5 km, and 5-8 km in one regression since the

impacts vary at these distance bands, with the distance band 8-11 km as the base group.14 The

regression model is specified as follows:

log (Fit) = β0 + β1B0−2km,it + β2B2−5km,it + β3B5−8km,it +Xiγ + δc + ϕt + εit (2)

where the B0−2km,it, B2−5km,it, and B5−8km,it are the distance bands of 0-2 km, 2-5 km, and 5-8

km, respectively. For example, if the distance to the nearest TML is 1.6, then B0−2km,it = 1,

and other distance bands equal to zero. The other variables in Equation (2) are same as those in

Equation (1).

14We thank the editor for this valuable suggestion.
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3.3 Housing value model

The location of TMLs may be endogenous (Shokri Gazafroudi et al., 2022) especially in the hous-

ing value regressions. The endogeneity of TMLs sitings would cause downward bias because of

the disproportionate siting of TMLs in poorer neighborhoods. To mitigate this concern, we add

fine-scale spatial fixed effects and only leverage variations in the same neighborhood15 where “neigh-

borhood quality” is relatively homogeneous within the spatial unit controlled by the fixed effects

model (Ciccone, 2002; Von Graevenitz and Panduro, 2015; Addison et al., 2022). The time-invariant

price differences between different neighborhood communities are then absorbed by the fixed effects.

The plausibility of the fixed effects estimator depends on there being no unobserved time-varying

confounders after the set of controls is included.

Specifically, our fixed effects regressions control for time-invariant neighborhood characteristics

at the census tract level. A census tract is small enough that residents are more or less similar

in important social-economic characteristics. Nonetheless, the fixed effects control still retains

significant variations in the proximity to TMLs. Our samples show that the minimum and maximum

distance to the TMLs could be quite different across different census tracts. For example, in some

tracts most houses are located within a 2 km radius of a TML while in others most houses are

located over 10 km away. When checking variations in the proximity to TMLs within census tracts,

the average difference between the maximum and the minimum distances to TMLs is around 2.5

km with a standard deviation of 2.6 km, which provides enough variations for estimation.16

We restrict the sample to limit houses within 3 km of TMLs based on results in Panel B of

Figure 3. The baseline model that estimates the effects of TMLs on housing property values is

specified as:

log (Hit) = α0 + α1lineit + Ziη + δs + ϕt + εit (3)

15The neighborhood means census tract in our context. The census tract data come from Census Bureau and can
be found at https://www.census.gov. According to its definition, a census tract is a small, relatively permanent
statistical subdivision of a county delineated by a local committee of census data users for the purpose of presenting
data. Designed to be relatively homogeneous units with respect to population characteristics, economic status, and
living conditions at the time of establishment, census tracts average about 4,000 inhabitants. Literature such as Tang
et al. (2020) also applied census tracts as spatial fixed effects for analysis.

16Although our pooled regressions results using block group fixed effects remain robust as shown in Columns (1)-(3)
of Table B3 in the appendix, we did not add block group fixed effect because (i) the average number of observations
within block groups is around 100, which is far less than the 300 average in census tracts; (ii) the within variation in
block groups is much smaller than in census tracts, as the difference of maximum and minimum distances to TMLs
is only around 1 km with standard deviation 1.3 km, which may not give us enough variations to precisely estimate
the effect.
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Similar to Equation (2), we specify the distance bands to capture the nonlinear effects of TMLs

on housing prices based on the results in Panel B of Figure 3. We use the distance bands of 0-0.5

km, 0.5-1 km, 1-1.5 km, and 1.5-2 km, with the distance band 2-3 km as the base group. The

regression model is specified as follows:

log (Hit) = β0+β1B0−0.5km,it+β2B0.5−1km,it+β3B1−1.5km,it+β4B1.5−2km,it+Ziη+δs+ϕt+εit (4)

where the B0−0.5km,it, B0.5−1km,it, B1−1.5km,it, and B1.5−2km,it are the distance bands of 0-0.5

km, 0.5-1 km, 1-1.5 km, and 1.5-2 km, respectively. For example, if the distance to the nearest

TML is 1.6, then B1.5−2km,it = 1, and other distance bands equal to zero. The other variables in

Equation (4) are same as those in Equation (3).

4 Empirical Results

In this section, we first report the estimates of the impacts of TMLs on property values, and then

explore nonlinear relationship by adding distance bands based on the spatial extent identified in

Section 3.1 and test whether the effects of TMLs depend on the local potential of constructing

renewable energy facilities by using wind resources as a proxy variable for the potential.

4.1 Effects on farmland values

As shown in Column (1) of Table 2, proximity to transmission lines significantly increases farmland

sales prices. On average, being 1 km closer to the nearest TML in the radius of the spatial extent

(i.e., 11 km) increases values by approximately 1.04%(=exp(-0.0105)-1), holding everything else

constant. The average distance for the 25th percentile and 75th percentile is 1.21 km and 5.59

km, with a difference of 4.38 km.17 This difference suggests that holding everything else constant,

if a farmland parcel located at the 75th percentile of the distance to TMLs (5.59 km) moved to

the 25th percentile (1.21 km), its value increases by 4.71%(=exp((-0.0105)×(-4.38))-1). Several

factors might explain this positive effect. First, farmers might expect the option values from the

construction of renewable energy facilities and receive compensation, as renewable energy facilities

17Additional statistics for these distance variables are displayed in Table B5.
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are generally built near TMLs.18 Second, proximity to transmission lines is crucial for adopting new

technologies, particularly for agricultural operations in rural areas with limited power grid support.

Grid failures can leave these operations without power for hours or days.19 To integrate innovative

equipment, such as precision agriculture tools, into the power grid, they must be connected via

transmission lines (Wall, 2001). Farms located far from transmission lines may not have sufficient

power for certain technologies and installing TMLs can be prohibitively expensive. Therefore, farms

in close proximity to TMLs are better placed to adopt new technology due to convenient grid access.

The nonlinear estimates pertaining to the impacts of TMLs on farmland values within the spatial

extent, identified in Section 3.1, are presented in Column (2) of Table 2. The findings reveal that,

in comparison to the prices of farmland parcels in proximity to the nearest TML within the 8-11 km

range, farmland prices located closest to TMLs in the 0-2 km range exhibit a premium of 10.98%

(=exp(0.1042)-1). This premium gradually attenuates to 8.58% (=exp(0.0823)-1) as the distance

band extends to 2-5 km and further decreases to 5.57% (=exp(0.0542)-1) as the distance increases

to 5-8 km.

Most control variables are correlated with farmland values, consistent with our expectations as

shown in Column (1) of Table B4. Being close to urban areas and the larger population in the urban

areas creates a premium for farmland, which confirms findings in the existing literature (Chicoine,

1981; Huang et al., 2006; Kuethe et al., 2011; Zhang and Nickerson, 2015). Not surprisingly, land

quality measures, including land percentage tillable and average NCCPI for agriculture, are pos-

itively associated with farmland sale prices. Locating near a highway or railway could increase

farmland values due to lower transportation costs. Being close to biodiesel or a grain warehouse

could also reduce transportation costs, thus increasing farmland values. However, being close to a

body of water may have a high risk of flooding (Chicoine, 1981; Wang, 2021) and lowers farmland

values.

We further explore the synergy of TMLs and the construction potential of renewable energy

because TMLs may interact with renewable energy facilities and have a synergy effect on farmland

prices. We utilize wind resources to capture the potential of renewable energy because of two

18Examples of farmers who received compensation from solar and wind turbine construction projects can be found
in the following sources:https://tinyurl.com/47bvuzyf and https://www.gao.gov/assets/gao-04-756.pdf.

19For more details, see https://cpower.com/2021/11/30/reliable-power-is-critical-for-agriculture/.
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reasons. First, the Midwest is one of the major suppliers of wind energy, accounting for 27% in the

U.S. due to the region’s open plains and the high wind speed. Second, existing literature shows that

wind potential is an effective instrument for capturing the potential of wind energies (Kaffine, 2019;

Zou, 2017). We do not choose solar resources because the adoption of agrivoltaics and utility-scale

solar farms in the Midwest is still low (Hoff and DeVilbiss, 2017). To test whether the TMLs effects

differ depending on the wind potential, we add to Equation (1) a set of interaction terms between

the three distance bands with a dummy denoting whether located at high wind areas.

We define high-wind areas as places with 7 meter/second of wind or above at an elevation of

100 meters. As well as aligning with the fact that experimental data indicates that seven meters

per second achieves optimal efficiency (Xu and Zha, 2021), this speed cutoff is consistent with our

empirical observation that 83.2% of all wind turbines in the Corn Belt are installed in an area

with a wind speed above it. This practice enables us to obtain an estimated farmland sales price

differential among these four categories based on proximity to the TMLs and wind resources.

As presented in Column (3) of Table 2, a comparison between farmland properties in the reference

group, located within a range of 8-11 km from the nearest TML, and those situated within the 0-2

km radius reveals a noteworthy difference. Farmlands within the 0-2 km proximity exhibit a price

premium of 8.26% (=exp(0.0794)-1) when compared to the base group. For farmlands within the

0-2 km range from the nearest TML, the sale price of farmland located in high-wind areas registers

an even higher premium, standing at 3.10% (=exp(0.0794+0.0844-0.0539-0.0794)-1), in contrast to

those located in low-wind areas, holding all other variables constant. This result underscores the

presence of substantial wind option values associated with farmland in close proximity to TMLs,

particularly in light of potential wind resources. As expected, the wind option values exhibit a

diminishing trend as the distance band expands to 2-5 km and subsequently to 5-8 km. This trend

is evident through the reduced magnitude and declining statistical significance of the other two

interaction terms as presented in Column (3).
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4.2 Effects on housing property values

Our results suggest significant disamenity effects as shown in Column (1) in Table 3. If a house is 1

km closer to the nearest TML in the radius of the spatial extent (i.e., 3 km) identified in Section 3.1,

its housing price decreases by 2.74%(=exp(0.0270)-1) on average, holding everything else constant.

The distance to the nearest TML for the 25th percentile and 75th percentile is 0.53 km and 1.80 km

as shown in Panel B of Table B5, with a difference of 1.27 km, suggesting that holding everything

else constant, if a house located at the 25th percentile of the distance to TMLs moved to the 75th

percentile, its value increases by 3.49%(= exp(0.0270×1.27)-1).

The influence of TMLs on housing property values reveals nonlinear patterns within the spatial

extent, identified in Section 3.1. As presented in Column (2) of Table 3, compared to houses within

a 2-3 km radius of TMLs, houses within 0-0.5 km range experience a 5.20% (=exp(-0.0534)-1) price

decrease. This negative effect diminishes as the distance band extends to 0.5-1 km, reaching a value

of 3.44% (=exp(-0.0350)-1), which further decreases to 1.73% (=exp(-0.0175)-1) as the distance

band encompasses the range of 1-1.5 km. As the distance band expands to 1.5-2 km, the disamenity

effect becomes considerably attenuated in magnitude, registering a mere 0.92% (exp(-0.0092)-1),

and is only marginally significant.

In column (2), Table B4, we find a larger lot size, more stories, rooms, bedrooms, and full baths

increase housing property values significantly. The age of housing properties has a negative influence

on housing property values, potentially attributable to various factors including escalated mainte-

nance expenses, absence of contemporary amenities, possible safety apprehensions, and outdated

architectural designs prevalent in older properties.20

As depicted in Column (3) of Table 3, among the four interactions with the high wind dummy,

only the interaction between distance band 0-0.5 km and located in a high wind area is statistically

significant at 10% level. An examination between houses in the reference group situated within a

distance of 2-3 km from the nearest TML, and those positioned within the 0-0.5 km radius exhibit

a discernible disamenity effect of 4.95%(=exp(-0.0508)-1) in comparison to the reference group. For

20Note that empirical evidence suggests a U-shaped relationship between the age of housing property and housing
prices, with a turning point estimated to occur around 500 years. However, the maximum age observed within our
sample is 318 years, thereby implying a negative impact of age on housing property prices within the age range
examined. Importantly, our findings hold robust when excluding the squared term of age in the analysis.
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residences falling within the 0-0.5 km range from the nearest TML, the sale prices of houses situated

in high-wind areas exhibit an even more pronounced disamenity effect, totaling 2.83%(=exp(-0.0508-

0.0316+0.0029-(-0.0508))-1), relative to their counterparts in low-wind areas, all else being equal.

This interaction term implies that the adverse consequences stemming from proximity to TMLs

on housing prices are exacerbated in regions characterized by heightened wind speeds. We posit

that the amplified disamenity effects observed in high-wind areas may be attributed to an increased

susceptibility to wind-related natural disasters. These events, including the potential collapse of

TMLs, can have cascading effects on neighboring housing properties. Notably, several states in our

study regions are susceptible to tornadoes.21

5 Heterogeneity and Robustness Checks

We conducted a series of heterogeneous analyses and robustness checks to test whether our results

are sensitive to different econometric specifications and remain robust in subsamples.

5.1 Heterogeneity across urban and rural properties

Urban and rural properties may have different responses to the influence of TMLs. In the farmland

case, renewable energy facilities such as wind turbines are generally located in rural areas (Grieser

et al., 2015), so the premium related to renewable energy might only show up or dominate in

rural farmland parcels. For residential housing prices, although both urban and rural homeowners

might have concerns about the aesthetics and visual disamenities of TMLs, we conjecture that

rural residents could value the convenience of improved access to electricity and associated energy

cost savings.22 Therefore, we test for the heterogeneous influence of TMLs across urban and rural

properties.

As depicted in Column (4) of Table 2, the coefficients associated with the interaction terms

21Please refer to a ranking of tornado risks by state at http://www.usa.com/rank/

us--tornado-index--state-rank.htm.
22American Council for Energy Efficient Economy shows that overall, Americans living in rural areas spend a

disproportionally high share of their income on energy bills. Rural households have a median energy burden of
4.4%, compared to the national burden of 3.3% (Ross et al., 2018).Note that the 2010 Census Urban and Ru-
ral Classification defines an urban area as an area with a population of 50,000 or more people, while an ur-
ban cluster consists of at least 2,500 and less than 50,000 people. This information could be found at https:

//www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html. The
remaining areas are designated as rural.
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between distance bands and the urban county dummy variables exhibit a consistently negative sign,

although not statistically significant at a 10% level. These results provide weak evidence suggesting

that the implementation of renewable energy infrastructure, such as wind turbines, in the Midwest

might have the potential to generate additional value for farmers in rural areas. But this premium

is not statistically different from farmland parcels located in urban county.

The impact of TMLs on housing sales prices displays substantial variations between urban and

rural contexts based on Column (4) of Table 3. For houses located within the 0-0.5 km range from

the nearest TML, prices of urban houses decrease by 2.90% (=exp(-0.0294)-1) when compared to

their rural counterparts. Similar patterns in urban houses are also observed in the distance bands of

0.5-1 km and 1-1.5 km. The heterogeneous effects of TMLs across urban and rural samples suggest

the importance of distinguishing the effects of TMLs in different regions when conducting an impact

evaluation. For example, residents in urban areas should be compensated more than those in the

rural areas.

5.2 Additional measures of transmission lines

We developed several additional measures for TMLs to enhance our understanding of their impacts

on property values. For farmland, we calculate the number of TMLs within each distance band and

then generate a dummy variable, indicating whether two or more TMLs exist within each band.

Subsequently, we interact these dummy variables with the distance bands to investigate whether the

presence of two or more TMLs within the same distance band generates additional premiums for

farmlands. The results are summarized in Column (5) of Table 2, revealing that for farmlands with

the nearest TML in the 0-2 km range, those with two or more TMLs within this band command

prices that are 8.98% higher (=exp(0.0860)-1) than comparable ones with only one TML. Additional

premiums stemming from the presence of two or more TMLs are also observed in the distance bands

of 2-5 km and 5-8 km with a smaller magnitude. Furthermore, we employ another measure that

takes into account whether a transmission line crosses the farmland parcel itself, which could bring

challenges for farming activties especially during maintenance and repair of TMLs (Sardaro et al.,

2018). Our results indicate that this measure exerts a negative influence on farmland values but

19



does not attain statistical significance, as demonstrated in Column (6) of Table 2.23

For housing properties, we calculate the number of TMLs within each distance band and generate

a dummy variable, indicating whether two or more TMLs exist within each band. We then interact

these dummy variables with the distance bands to investigate whether the presence of two or more

TMLs within the same distance band generates additional disamenities for houses. Our results,

summarized in Column (5) in Table 3, reveal that having two or more TMLs does not seem to

bring additional, statistically significant disamenity effects on housing prices. The coefficient of

the interaction term within the band 1-1.5 km is the only significant one among all interactions.

However, we note that the same distance band is not significant when we allow for differential

impacts due to the presence of two or more TMLs.

5.3 Subsample analysis

We explore whether TMLs’ effects on both farmland values and housing prices are heterogeneous

across regions. We divide states in the Midwest into three categories by geographic proximity and

similarity: (i) I-states (Iowa, Illinois, and Indiana)24; (ii) Lake states (Wisconsin, Michigan, Ohio,

and Minnesota); and (iii) Great plains states (Nebraska, South Dakota, North Dakota, Missouri,

and Kansas). We observe significant heterogeneities in these regions as shown in Columns (1)-(3)

in Table 4 and Columns (1)-(3) in Table 5.

Results in Columns (1) to (3) of Table 4 confirm the findings that the premium associated with

farmland proximity to TMLs is not uniform across distance bands. For instance, the coefficient

associated with the distance band of 0-2 km is estimated at 0.1518 for great plain states, and this

figure is 0.1226 and 0.0806 for the band of 2-5 km and 5-8 km, respectively. Moreover, comparing

results among columns (1) to (3) also highlight regional disparities in the premium. Specifically,

while the premium in the Lake states is relatively small and statistically insignificant, the Great

Plains region consistently exhibits higher premiums, indicating that TMLs have a more pronounced

23We thank one reviewer for suggesting conducting a regression analysis of bifurcation on plot-level yield would
enable us to test whether farmlands with TMLs running through have lower yields. Unfortunately, we do not have
access to plot-level yield data for the farmlands in FarmlandFinder at present, which restricts us from conducting
such analysis.

24“I-states” typically refers to the three Midwestern agricultural states whose names begin with the letter “I”:
Illinois, Indiana, and Iowa. They are often grouped together due to their proximity and similar agricultural economies,
etc. Basha et al. (2021) and Chen et al. (2022) use similar group in their analysis.
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positive effect on farmland values. The higher premium for Great Plain states’ farmlands could be

because energy infrastructure investment is larger in these states.25 This observation underscores

the importance of considering regional variation when assessing the impact of TMLs on farmland

prices, with a clear indication that areas with greater energy infrastructure investments tend to

experience more substantial premiums.

We observe significant disamenity effects of TMLs on housing prices in both I-states and Lake

states. The coefficients of the distance band of 0-0.5 km for I-states and Lake states amount to

-0.0612 and -0.0550, respectively, and are both significant at a 1% level. The disamenity effects

in I-states and Lake states might stem from the higher population densities within these states

compared to great plain states26, which conceivably lead to greater proximity between residential

dwellings and TMLs, thereby intensifying the influence of any potential disamenity effects. The

presence of more natural amenities in I-states and Lakes states compared to great plain states

might help explain the stronger visual disamenity effects of TMLs. The Major Land Uses database

maintained by USDA Economic Research Service shows that I-states and Lakes states have more

parks and wilderness areas in percentage of total land use.27

Our results suggest disamenity effects of TMLs within the housing market of the Great Plains

are not statistically significant, which could be attributed to the sparser population distribution

characteristic of the Great Plains, potentially resulting in reduced sensitivity to disamenity effects.

Furthermore, great plain states have been a hot spot for other energy infrastructure investments ac-

cording to U.S. Energy Information Administration (EIA)28, including intrusive shale gas projects29,

and we conjecture that this potentially makes TMLs less visually disturbing.

5.4 Heterogeneity across TML voltages

We also explore the heterogeneous effects of electricity transmission lines across various voltages.

According to the EFE-PORTAL, we define transmission lines below 150 KV as low class and the

25The state ranking of the energy infrastructure investment in the U.S. refers to https://www.usnews.com/news/

best-states/rankings/infrastructure.
26The state ranking of the population density in the U.S. refers to https://wisevoter.com/state-rankings/

population-density-by-state/.
27More details about the database could be found at: https://www.ers.usda.gov/data-products/

major-land-uses/maps-and-state-rankings-of-major-land-uses/.
28More details related to energy infrastructure investment refers to https://www.eia.gov/maps/maps.php.
29A report on the invasiveness of shale gas can be found in https://www.theguardian.com/environment/2013/

dec/14/fracking-hell-live-next-shale-gas-well-texas-us.
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ones above 150 KV as high class.30 For farmland values, although both high-voltage and low-voltage

TMLs have premiums for farmland values, the low-voltage ones have a larger magnitude (as shown

in Column (4)-(5), Table 4) possibly because high-voltage TMLs are generally more noticeable and

taller, have more structures, and occupy more land, resulting in a visual disamenity (Devine-Wright

and Batel, 2013; Sardaro et al., 2018). In addition, high-voltage TMLs are often associated with

perceived risks, including possible adverse health effects (Bickel et al., 2005). Thus, these adverse

effects associated with high-voltage TMLs might have offset part of the premium of TMLs for

farmland values. As shown in Columns (4) and (5) of Table 5, we do not find a significant difference

in the disamenity effects of TMLs on housing values.

5.5 Robustness checks using repeat sales samples

We further explore the repeat sales samples to account for house-specfiic, time-invariant unobserv-

ables using house fixed effects. However, the TML dataset lacks information on the installation dates

of transmission lines, which prevents us from measuring variations in distance to TMLs for each

transaction of the same property. As a result, proximity effects are captured by the time-invariant

distance measures to TMLs, making it difficult to use repeat sales to measure the impact of TML

proximity. To address this concern, we have searched for information on the average age of TMLs,

and find that according to the White House, more than 70% of the U.S. electricity grid is over 25

years old. Additionally, from 2013 to 2020, TML expansion has only grown by approximately 1%

per year, which indirectly suggest that the installation of new TMLs during our analysis period is

rare, thus minimizing the potential impact of new installations.

Although we cannot conduct the repeat sales analysis linking changes in housing prices with

changes in TML proximity, we conduct a robustness check of our main distance bands specification

using only houses that comprise the repeat sales samples. The results are summarized in Columns

(4)-(6) of Table B3, which shows that our findings remain robust in these samples.

30For more details, see https://www.emf-portal.org/en/emf-source/76.
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6 Conclusion

The U.S. is making a substantial investment in electricity transmission lines in the next few years.

The impacts of TMLs on property values are still opaque, and the renewed efforts to modernize

and upgrade the electricity grid might shift property owners’ perceptions of nearby TMLs. Existing

literature often ignores the effects of TMLs considering the influence of option value from the

potential of renewable energy. This paper addresses the research gap by combining multiple datasets

including Zillow housing sales data, farmland sales data, satellite data on wind resources, land

characteristics data, and some other supplementary datasets to explore the capitalization effects of

TMLs on both farmland and housing property values.

We reaffirm the disamenity effects of TMLs on residential property values, which is especially

stronger for urban houses than houses located outside urban areas. These results imply that urban

residents shoulder a more substantial burden of negative spillover effects arising from the construc-

tion and operation of TMLs.

Our paper provides novel and contrarian evidence on the impacts of TMLs on farmland sales

prices. Different from the null effects in the literature, we find proximity to transmission lines

creates positive values for farmland owners, especially for those owning parcels with abundant

wind resources, which can be capitalized into higher land prices. Similar results were also found

in Abashidze and Taylor (2022), which explores the effects of the construction of solar farms on

agricultural land values; they found the price of farmland near TMLs slightly increases after the

construction of solar farms.

The contrarian evidence on farmland values offered here highlights the evolution of TMLs’

influence on property values. Existing literature generally finds disamenity effects of TMLs due

to their interruption of agricultural production, their unaesthetic appearance, and potential health

risks and hazards. Recent literature largely found null effects of TMLs, possibly because of farmers’

and residents’ adaptation to TMLs in terms of agricultural production, aesthetic adjustment, and

scientific cognition. Our results provide new results different from the disamenity and null effects,

possibly due to the option value from the renewable energy, convenient and less-costly access to

reliable electricity supply for precision agriculture, and more electric appliances like electric cars.
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These results inspire us to evaluate TMLs from a dynamic and heterogeneous perspective.

Our results also provide insights into the construction and siting of TMLs. Considering the

disamenity effects on urban housing properties, the metropolitan areas are better off adopting

underground transmission lines to reduce the strong disamenity effects of TMLs on housing property

values. Our results suggest that farmland prices especially in rural counties enjoy premiums from

being close to TMLs, so the cheaper overhead TMLs may be a viable option in rural areas.

Our paper suggests two directions for future research. First, many TMLs were constructed before

2015, which marks the start of our study period, and this prevents us from analyzing property values

before and after the establishment of TMLs. Therefore, future research could leverage temporal

variations to improve the estimation of the treatment effect of TMLs using historical transactions.

Second, we did not distinguish the farmland parcels close to existing wind turbines from those

without; instead, our estimation focused on the wind resources potential. Incorporating the wind

turbines’ locations data could separate the anticipation effects of future turbine constructions on

farmland values.
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Main Figures

Figure 1: Spatial Distribution of Farmland Sales and Residential Housing Sales in Twelve Mid-
western States

(a) Spatial Distribution of Arm’s Length Farmland Sales

(b) Spatial Distribution of ZTRAX Single-Family Residential Housing Sales

Note: Panel (a) of this figure indicates the geographical location of farmland parcels in 12 Mid-
western states and the transmission lines by voltages. The black dot represents the farmland and the
lines are transmission lines. The red lines indicate the transmission lines with the highest voltage while
the brown ones have the lowest voltage. This dataset is from FarmlandFinder, a startup company now
acquired by Growers Edge. Panel (b) of this figure indicates the geographical location of houses in
12 states and the transmission lines by voltages. The black dot represents the house and the lines are
transmission lines. The red lines indicate the transmission lines with the highest voltage while the brown
ones have the lowest voltage. This dataset is from the Zillow ZTRAX database.
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Figure 2: Spatial Distribution of Wind Speed at 100-meter Hub Height with Existing Wind
Turbines

Note: This figure presents the geographical location of wind turbines and the wind speed
spatial distribution in the Midwest. The red dot indicates the wind turbine. The light gray area
represents the low-wind area with wind speed lower than 7 m/s. The dark gray is the high-wind
area with wind speed above 7 m/s.
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Figure 3: Nonlinear Effects of Proximity to TMLs on Farmland Values and Housing Property
Values

(a) Nonlinear Effects of Proximity to TMLs on Farmland Prices

(b) Nonlinear Effects of Proximity to TMLs on Housing Prices

Note: Panel (a) of this figure depicts the impact of proximity to electricity transmission lines
(TMLs) on farmland prices, highlighting a nonlinear pattern. The x-axis represents distance bands to
TMLs, ranging from 0-1 km to 10-11 km, with the base band being beyond 11 km. The y-axis displays
the coefficients indicating the impact of proximity to TMLs on farmland prices. This figure shows that
closer proximity to TMLs has a stronger positive impact on farmland values. The magnitude of the
positive impact diminishes as the distance from TMLs increases; the positive effect disappears when
the distance goes beyond 8 km. Panel (b) of this figure depicts the impact of proximity to TMLs on
housing prices, exhibiting a nonlinear pattern as well. The x-axis represents distance bands to TMLs,
ranging from 0-0.5 km to 2.5-3 km, with the base band being beyond 3 km. The y-axis displays the
coefficients indicating the impact of proximity to TMLs on housing prices. This figure shows that closer
proximity to TMLs has a stronger negative impact on housing values. The magnitude of the negative
impact diminishes as the distance from TMLs increases. This negative effect is only significant at the
90% level when the distance is within 1.5 km.
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Main Tables

Table 1: Summary Statistics

Variables Unit Mean Std.dev. Min Max

Panel A: Farmland

Farmland price dollars/acre 5,667.90 3,988.30 520.00 28,500.00
Distance to the nearest TML km 3.66 2.92 0.00 11.00
Distance band (0-2 km) 1=yes; 0=no 0.38 0.48 0.00 1.00
Distance band (2-5 km) 1=yes; 0=no 0.33 0.47 0.00 1.00
Distance band (5-8 km) 1=yes; 0=no 0.18 0.39 0.00 1.00
Located in high wind areas (>7 m/s) 1=yes; 0=no 0.28 0.45 0.00 1.00
Gross acres ×100 1.27 2.48 0.10 99.21
Land percentage tillable [0,1] 0.77 0.41 0.00 1.00
Average NCCPI for agriculture [0,1] 0.42 0.18 0.00 0.81
% of prime farmland [0,1] 0.23 0.27 0.00 1.00
Soil texture: % of clay [0,1] 0.00 0.04 0.00 1.00
Soil texture: % of silt [0,1] 0.00 0.02 0.00 0.83
Soil texture: % of loam [0,1] 0.12 0.24 0.00 1.00
Average land slope degree 7.95 7.83 0.00 55.00
Whether in urban county 1=yes; 0=no 0.53 0.50 0.00 1.00
Population in urban areas count (×10000) 6.10 15.88 0.00 263.74
Distance to highway m (×10000) 0.39 0.39 0.00 3.80
Distance to railway m (×10000) 0.95 0.95 0.00 9.93
Distance to body of water m (×10000) 0.32 0.29 0.00 2.56
Distance to biodiesel m (×10000) 10.88 6.78 0.05 44.88
Distance to grain warehouse m (×10000) 1.43 1.70 0.01 19.81
If TMLs across farmland 1=yes; 0=no 0.07 0.26 0.00 1.00
Two or more TMLs (0-2 km) 1=yes; 0=no 0.20 0.40 0.00 1.00
Two or more TMLs (2-5 km) 1=yes; 0=no 0.36 0.48 0.00 1.00
Two or more TMLs (5-8 km) 1=yes; 0=no 0.47 0.50 0.00 1.00

Panel B: Housing

House transaction price dollars (×1000) 181.68 157.84 1.00 1900.00
Distance to the nearest TML km 1.20 0.80 0.00 3.00
Distance band (0-0.5 km) 1=yes; 0=no 0.24 0.43 0.00 1.00
Distance band (0.5-1 km) 1=yes; 0=no 0.23 0.42 0.00 1.00
Distance band (1-1.5 km) 1=yes; 0=no 0.19 0.39 0.00 1.00
Distance band (1.5-2 km) 1=yes; 0=no 0.15 0.35 0.00 1.00
Located in high wind areas (> 7 m/s) 1=yes; 0=no 0.08 0.27 0.00 1.00
Whether in urban area 1=yes; 0=no 0.84 0.37 0.00 1.00
Age years 55.48 28.90 0.00 318.00
Lot size square feet (x1000) 43.57 143.56 1.00 1,742.40
No. of stories count 1.39 0.50 0.50 5.00
No. of total rooms count 4.99 2.78 0.00 14.00
No. of total bedrooms count 2.84 1.02 0.00 8.00
No. of full bath count 1.51 0.63 0.00 4.00
Two or more TMLs (0-0.5 km) 1=yes; 0=no 0.16 0.37 0.00 1.00
Two or more TMLs (0.5-1 km) 1=yes; 0=no 0.15 0.36 0.00 1.00
Two or more TMLs (1-1.5 km) 1=yes; 0=no 0.24 0.43 0.00 1.00
Two or more TMLs (1.5-2 km) 1=yes; 0=no 0.28 0.45 0.00 1.00

Note: This table presents the descriptive statistics for farmland and housing samples. In
total, there are 16,026 observations in the farmland dataset and 1,905,280 observations in the
housing dataset.
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Table 2: Effects of Proximity to TMLs on Farmland Values

Dependent variable Log of farmland prices

(1) (2) (3) (4) (5) (6)

Distance to the nearest TML -0.0105***
(0.0022)

Distance band (0-2 km) 0.1042*** 0.0794*** 0.1085*** 0.0681***
(0.0209) (0.0237) (0.0283) (0.0224)

Distance band (2-5 km) 0.0823*** 0.0635*** 0.0846*** 0.0520**
(0.0194) (0.0218) (0.0262) (0.0209)

Distance band (5-8 km) 0.0542*** 0.0310 0.0715*** 0.0267
(0.0193) (0.0224) (0.0245) (0.0229)

Distance band (0-2 km) × High wind 0.0844*
(0.0464)

Distance band (2-5 km) × High wind 0.0612
(0.0442)

Distance band (5-8 km) × High wind 0.0757*
(0.0440)

Located at high wind areas -0.0539
(0.0409)

Distance band (0-2 km) × Urban county dummy -0.0128
(0.0425)

Distance band (2-5 km) × Urban county dummy -0.0091
(0.0383)

Distance band (5-8 km) × Urban county dummy -0.0411
(0.0394)

Distance band (0-2 km) × Two or more TMLs (0-2 km) 0.0860***
(0.0175)

Distance band (2-5 km) × Two or more TMLs (2-5 km) 0.0625***
(0.0179)

Distance band (5-8 km) × Two or more TMLs (5-8 km) 0.0516**
(0.0226)

Whether TMLs across farmland -0.0231
(0.0180)

Adj. R-sq 0.424 0.429 0.429 0.429 0.431 0.427
No. of obs. 16,026 16,026 16,026 16,026 16,026 16,026

Note: This table shows the results for the effects of proximity to TMLs on farmland values.
The dependent variable is the logarithm of farmland sales prices for all regressions. Column (1)
presents the effects of distance to the nearest TML on farmland prices. Column (2) replaces the
major explanatory variable with three distance bands based on the results in Panel A of Figure 3.
Columns (3)-(5) report the heterogeneous results of impacts of TMLs across wind potential,
whether on urban counties, and whether there exist two or more TMLs within each distance
band, respectively. Column (6) summarizes the results of an alternative measure (i.e., whether
TMLs across farmland) of TMLs’ influence on farmland values. We controlled for farmland
characteristics, urban influence variables, agricultural profitability influence variables, county
fixed effects, and year fixed effects in all regressions. Significance: ∗ < 0.1, ∗∗ < 0.05, ∗ ∗ ∗ < 0.01.
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Table 3: Effects of Proximity to TMLs on Housing Property Values

Dependent variable Log of housing prices

(1) (2) (3) (4) (5)

Distance to the nearest TML 0.0270***
(0.0027)

Distance band (0-0.5 km) -0.0534*** -0.0508*** -0.0343*** -0.0524***
(0.0059) (0.0062) (0.0077) (0.0064)

Distance band (0.5-1 km) -0.0350*** -0.0334*** -0.0152** -0.0324***
(0.0055) (0.0057) (0.0075) (0.0057)

Distance band (1-1.5 km) -0.0175*** -0.0158*** -0.0007 -0.0070
(0.0051) (0.0054) (0.0080) (0.0061)

Distance band (1.5-2 km) -0.0092** -0.0083* -0.0012 -0.0117**
(0.0045) (0.0079) (0.0047) (0.0057)

Distance band (0-0.5 km) × High wind -0.0316*
(0.0185)

Distance band (0.5-1 km) × High wind -0.0204
(0.0175)

Distance band (1-1.5 km) × High wind -0.0213
(0.0163)

Distance band (1.5-2 km) × High wind -0.0124
(0.0145)

Located at high wind areas 0.0029
(0.0163)

Distance band (0-0.5 km) × Urban area dummy -0.0294***
(0.0085)

Distance band (0.5-1 km) × Urban area dummy -0.0296***
(0.0082)

Distance band (1-1.5 km) × Urban area dummy -0.0250***
(0.0086)

Distance band (1.5-2 km) × Urban area dummy -0.0123
(0.0085)

Distance band (0-0.5 km) × Two or more TMLs (0-0.5 km) -0.0027
(0.0057)

Distance band (0.5-1 km) × Two or more TMLs (0.5-1 km) -0.0068
(0.0046)

Distance band (1-1.5 km) × Two or more TMLs (1-1.5 km) -0.0172***
(0.0056)

Distance band (1.5-2 km) × Two or more TMLs (1.5-2 km) 0.0036
(0.0061)

Adj. R-sq 0.550 0.550 0.550 0.550 0.550
No. of obs. 1,905,280 1,905,280 1,905,280 1,905,280 1,905,280

Note: This table displays the results for the effects of proximity to TMLs on housing values.
The dependent variable is the logarithm of housing property sales prices for all regressions. Column
(1) reports the impacts of distance to the nearest TML on housing prices. Column (2) replaces the
explanatory variable with distance bands based on the results in Panel B of Figure 3. Columns
(3)-(5) present the heterogeneous impacts of TMLs across wind potential, whether in urban areas,
and whether there exist two or more TMLs within each band, respectively. We controlled for
housing characteristics, census tract fixed effects, and year-quarter fixed effects in all regressions.
Significance: ∗ < 0.1, ∗∗ < 0.05, ∗ ∗ ∗ < 0.01.

35



Table 4: Additional Heterogeneous Analysis of the Impacts of TMLs on Farmland Values

Regions Voltage

Dependent variable Log of farmland prices

Subsample I-states Lake states Great plains ≤ 150V >150V

(1) (2) (3) (4) (5)

Distance band (0-2 km) 0.0636*** 0.0003 0.1518*** 0.1240*** 0.0549*
(0.0216) (0.0407) (0.0332) (0.0244) (0.0306)

Distance band (2-5 km) 0.0385** 0.0105 0.1226*** 0.0824*** 0.0599**
(0.0191) (0.0383) (0.0310) (0.0241) (0.0289)

Distance band (5-8 km) 0.0240 -0.0224 0.0806** 0.0629*** 0.0227
(0.0221) (0.0372) (0.0322) (0.0222) (0.0307)

Adj. R-sq 0.394 0.519 0.408 0.432 0.427
No. of obs. 5,744 4,940 5,342 9,072 6,954

Note: This table shows the heterogeneous analysis for farmland values using subsamples
categorized by region and voltage, respectively. We controlled for farmland characteristics, urban
influence variables, agricultural profitability influence variables, county fixed effects, and year
fixed effects in all regressions. Significance: ∗ < 0.1, ∗∗ < 0.05, ∗ ∗ ∗ < 0.01.
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Table 5: Additional Heterogeneous Analysis of the Impacts of TMLs on Housing Prices

Regions Voltage

Dependent variable Log of housing prices

Subsample I-states Lake States Great Plains ≤150V >150V

(1) (2) (3) (4) (5)

Distance band (0-0.5 km) -0.0612*** -0.0550*** -0.0324 -0.0561*** -0.0365***
(0.0134) (0.0070) (0.0199) (0.0061) (0.0099)

Distance band (0.5-1 km) -0.0385*** -0.0351*** -0.0247 -0.0369*** -0.0237***
(0.0119) (0.0065) (0.0188) (0.0056) (0.0090)

Distance band (1-1.5 km) -0.0253** -0.0181*** 0.0046 -0.0194*** -0.0058
(0.0108) (0.0061) (0.0175) (0.0053) (0.0083)

Distance band (1.5-2 km) -0.0059 -0.0114** -0.0031 -0.0093** -0.0086
(0.0100) (0.0052) (0.0161) (0.0047) (0.0075)

Adj. R-sq 0.554 0.537 0.616 0.550 0.551
No. of observations 387,071 1,285,914 232,294 1,665,614 238,551

Note: This table shows the heterogeneous analysis for housing prices using subsamples
categorized by region and voltage, respectively. We controlled for housing characteristics, census
tract fixed effects, and year-quarter fixed effects in all regressions. Significance: ∗ < 0.1, ∗∗ <
0.05, ∗ ∗ ∗ < 0.01.
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Appendix A: Additional Figures

Figure A1: Screenshot of the FarmlandFinder Website

Note: This figure presents the FarmlandFinder website, which is the source of farmland value
dataset. It has been acquired by Growers Edge, and is accessible at https://app.range.ag/.
It provides detailed information on auction or listing farmland acres, percent of tillables, crop
history, and soil productivity index. It also shows the number of farmland parcels for sale in
almost all of the Midwest (i.e. 12 states).
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Figure A2: Spatial Distribution of Urban and Rural Classifications

(a) Urban and Rural Classification for Farmland Values Analysis

(b) Urban and Rural Classification for Housing Prices Analysis

Note: This figure illustrates the spatial distribution of urban areas within the selected states.
Panel A showcases the urban/rural classification for analyzing farmland values, where the dark regions
correspond to urban counties, while the white regions correspond to rural counties. Panel B presents the
urban/rural classification for analyzing housing prices, with the blue regions representing urban areas
and the remaining white regions designated as rural areas.

A-2



Appendix B: Additional Tables

Table B1: Housing Characteristics Comparison before and after Imputation

Before After
Standardized DifferenceNo. of Obs. Mean SD Missing % No. of Obs. Mean SD

Age 1,234,433 54.59 32.62 35.22 1,905,468 55.48 28.90 0.03
No. of stories 1,094,143 1.38 0.54 42.58 1,905,468 1.39 0.50 0.02
No. of total rooms 939,499 5.00 3.14 50.69 1,905,468 4.99 2.78 0.00
No. of total bedrooms 1,169,295 2.85 1.17 38.63 1,905,468 2.84 1.02 -0.01
No. of full baths 1,101,577 1.53 0.74 42.19 1,905,468 1.51 0.63 -0.03

Note: This table shows the housing characteristics comparisons before and after imputation. Before imputation, data is missing at least 35% for each
characteristic. We use block group average, census tract average, county average and state average to impute the missing values. There are no significant
differences between samples before and after imputation, and thus there is no obvious data structure change, which implies our imputation method is
reliable.
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Table B2: The Number of Houses with Missing Housing Characteristics by Spatial Scales and
States

Panel A: By area levels

Block Census Tract County
Age 6,249 2,503 182
No. of stories 7,508 2,874 210
No. of total rooms 18,525 7,181 320
No. of total bedrooms 8,973 3,425 220
No. of full bath 10,570 4,156 307
Total number of obs. 40,564 15,464 686

Panel B: By states

MN IA IL
Age 62,553 21,700 116,080
No. of stories 94,485 31,782 132,737
No. of total rooms 94,825 35,520 162,075
No. of total bedrooms 54,864 23,698 148,850
No. of full bath 89,185 25,358 131,968
Total number of obs. 212,183 99,510 235,940

NE KS MO
Age 14,080 1,319 17,351
No. of stories 18,605 4,495 29,687
No. of total rooms 59,689 4,239 27,873
No. of total bedrooms 19,632 1,290 27,675
No. of full bath 47,089 1,293 27,675
Total number of obs. 96,460 12,556 93,444

MI WI SD
Age 140,036 194,080 2,495
No. of stories 189,032 195,832 7,147
No. of total rooms 243,692 210,559 2,592
No. of total bedrooms 156,032 188,021 2,549
No. of full bath 158,538 194,058 9,377
Total number of obs. 432,428 239,502 9,428

ND IN OH
Age 6,297 8,608 86,325
No. of stories 9,827 10,396 87,178
No. of total rooms 11,229 12,624 100,923
No. of total bedrooms 10,948 11,898 90,601
No. of full bath 16,301 15,070 85,609
Total number of obs. 18,158 51,622 401,801

Note: This table presents the number of complete missing cells from two different perspec-
tives. Panel A indicates the number of totally missing block group/census tract/county by house
characteristics. Panel B shows the number of missing observations in each state by house charac-
teristics. For comparing the number of missing values with total observations in each area/state,
we list the total number of observations in the last row of each section.

A-4



Table B3: Additional Robustness Check for Housing Prices

Block group fixed effect Repeat sales sample No imputation

Dependent variable Log of housing prices

Sample Pooled Urban areas Rural areas Pooled Urban areas Rural areas Pooled Urban areas Rural areas
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Distance band (0-0.5 km) -0.0514*** -0.0546*** -0.0435*** -0.0475*** -0.0489*** -0.0328** -0.0506*** -0.0606*** -0.0133
(0.0057) (0.0076) (0.0088) (0.0082) (0.0098) (0.0129) (0.0072) (0.0085) (0.0114)

Distance band (0.5-1 km) -0.0352*** -0.0391*** -0.0261*** -0.0267*** -0.0275*** -0.0241* -0.0253*** -0.0318*** -0.0035
(0.0052) (0.0068) (0.0082) (0.0076) (0.0091) (0.0127) (0.0065) (0.0077) (0.0113)

Distance band (1-1.5 km) -0.0199*** -0.0226*** -0.0124 -0.0119* -0.0112 -0.0215 -0.0067 -0.0094 -0.0018
(0.0049) (0.0060) (0.0087) (0.0071) (0.0083) (0.0134) (0.0061) (0.0070) (0.0116)

Distance band (1.5-2 km) -0.0099** -0.0100** -0.0103 -0.0059 -0.0037 -0.0236* -0.0062 -0.0070 -0.0072
(0.0041) (0.0047) (0.0081) (0.0061) (0.0069) (0.0124) (0.0053) (0.0059) (0.0116)

Housing characteristics Yes Yes Yes Yes Yes Yes Yes Yes Yes
Block group fixed effect Yes Yes Yes
Census tract FE Yes Yes Yes Yes Yes Yes
Year-quarter FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R-sq 0.571 0.624 0.315 0.539 0.565 0.345 0.693 0.714 0.450
No. of observations 1,903,527 1,595,184 307,027 992,014 893,838 98,176 801,698 724,553 76,798

Note: This table presents supplementary robustness analyses, wherein Columns (1)-(3) execute tests by substituting block group fixed effects,
Columns (4)-(6) perform tests in repeat sales samples and the number of observations for these three columns present the number of houses involving
repeated sales, and Columns (7)-(9) perform tests in samples that do not undergo imputation. The housing regressions incorporate variables related to
housing characteristics. Columns (1)-(3) utilize block group fixed effects with standard errors clustered at the block-group level, while columns (4)-(9)
employ census tract fixed effects. Significance: ∗ < 0.1, ∗∗ < 0.05, ∗ ∗ ∗ < 0.01.
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Table B4: Baseline Results of the Impacts of TMLs on Nearby Farmland Values and Housing
Prices with Control Variables

Farmland Values Housing Prices

Dependent variable Log of farmland prices Log of housing prices

All sample (1) (2)

Distance band (0-2 km) 0.1042*** (0.0209)
Distance band (2-5 km) 0.0823*** (0.0194)
Distance band (5-8 km) 0.0542*** (0.0193)
Distance band (0-0.5 km) -0.0534*** (0.0059)
Distance band (0.5-1 km) -0.0350*** (0.0055)
Distance band (1-1.5 km) -0.0175*** (0.0051)
Distance band (1.5-2 km) -0.0092** (0.0045)
Gross acres -0.0798*** (0.0067)
Gross acres2 0.0010*** (0.0002)
Land percentage tillable 0.2203*** (0.0204)
Average NCCPI for agriculture 0.7200*** (0.0663)
% of prime farmland 0.0586 (0.0394)
Soil texture: % of clay 0.2395 (0.2050)
Soil texture: % of silt -0.2140 (0.1451)
Soil texture: % of loam -0.0324 (0.0364)
Average land slope 0.0017 (0.0013)
Population in urban areas 0.0063*** (0.0006)
Whether in urban county 0.1787*** (0.0260)
Distance to highway -0.1186*** (0.0210)
Distance to railway -0.0430*** (0.0104)
Distance to body of water 0.1163*** (0.0285)
Distance to biodiesel -0.0171*** (0.0021)
Distance to grain warehouse -0.0494*** (0.0078)
Age -0.0065*** (0.0002)
Age2(/100) 0.0006*** (0.0001)
Lot size 0.0003*** (0.0000)
No. of stories 0.1099*** (0.0032)
No. of total rooms 0.0129*** (0.0015)
No. of total bedrooms 0.0585*** (0.0021)
No. of full bath 0.1722*** (0.0026)

County FE Yes
Year FE Yes
Census tract FE Yes
Year-quarter FE Yes

Adj. R-sq 0.429 0.550
No. of obs. 16,026 1,905,280

Note: This table shows complete baseline results for both farmland values and housing
prices. In each column, the coefficients are in the left and the standard errors are in the paren-
theses. Significance: ∗ < 0.1, ∗∗ < 0.05, ∗ ∗ ∗ < 0.01.
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Table B5: Detailed Summary Statistics for Distance Variables

Variables Sample Unit Mean Std. dev. Min P10 P25 P50 P75 P90 Max

Panel A: Farmland
Distance to the nearest TML Whole sample km 3.66 2.92 0.00 0.40 1.21 2.93 5.59 8.30 11.00

I-states km 3.85 2.94 0.00 0.46 1.38 3.23 5.82 8.49 11.00
Lake-states km 3.34 2.80 0.00 0.36 1.01 2.58 5.12 7.74 11.00
Great plain states km 3.76 2.98 0.00 0.41 1.31 2.96 5.75 8.54 11.00

Panel B: Housing
Distance to the nearest TML Whole sample km 1.20 0.80 0.00 0.23 0.53 1.07 1.80 2.42 3.00

I-states km 1.34 0.80 0.00 0.31 0.66 1.25 1.96 2.53 3.00
Lake-states km 1.19 0.80 0.00 0.22 0.51 1.06 1.78 2.41 3.00
Great plain states km 1.05 0.75 0.00 0.20 0.43 0.88 1.53 2.21 3.00

Note: This table presents the complete summary statistics for the distance variables used in this paper. Panel A provides statistics for farmland-
related distance variables, while Panel B provides statistics for housing-related distance variables. Specifically, we report the mean, standard deviation,
minimum value, 10th percentile, 25th percentile, 50th percentile, 75th percentile, 90th percentile, and maximum value of these variables.
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