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Abstract 1 

Waterborne Escherichia coli (E. coli) represents a pervasive water quality problem across 2 

the United States. In Michigan, the presence of E. coli has become problematic for many areas 3 

where agricultural run-off and ineffective policies have made these outbreaks endemic. 4 

Combining the universe of housing transaction dataset from 2009 to 2017 with the State of 5 

Michigan water sampling dataset, we investigate and quantify the negative impacts of E. coli 6 

outbreaks on local housing prices. Our difference-in-differences model estimates an overall 7 

impact of -8.94% for houses in the treatment group relative to the control group. This effect is 8 

only short-term, as sales prices recover after the outbreak has ended. 9 

1 Introduction 10 

Ecological degradation leads to the loss of valuable ecosystem services and creates many 11 

potentially negative socioeconomic consequences at various scales (Scott et al., 2011). 12 

Economists often use housing prices to capture (at least partially) the social costs of decreased 13 

ecological quality, including those associated with water quality and its preservation (Wilson and 14 

Carpenter, 1999; Spanou et al., 2020). Among the many sources of ecological pressure on U.S. 15 

water systems, waterborne pathogenic Escherichia coli (E. coli) can cause immediate and 16 

potentially lethal effects on human health (Ishii and Sadowsky, 2008). E. coli also constitutes a 17 

pressing issue due to an increased rate of outbreaks driven by climate change, especially in the 18 

Laurentian Great Lakes basin (GLB) (Patz et al., 2008). Although bacteria levels in water 19 

decrease over time, E. coli can remain in sediments along the shores or on beaches, thus 20 

continuing to affect water quality and making outbreaks more likely over time (Davies et al., 21 

1995). In Michigan, these outbreaks have become a growing issue for both inland and coastal 22 



 
 

 

communities, especially in rural counties. According to the state’s website, roughly half of 23 

Michigan’s waterbodies exceed the EPA’s water quality standard for E. Coli as of early 2024.1 24 

Given the harmful effects of E. Coli and its prevalence in Michigan, it is important to 25 

quantify these effects to help design efficient mitigation policies. In this study we use hedonic 26 

pricing models and non-water-clarity-based approaches to estimate the effect of E. coli outbreaks 27 

in freshwater streams on housing prices across Michigan. To assess the effects of these 28 

outbreaks, we use point-level measurements conducted by Michigan’s Environment, Great 29 

Lakes, and Energy Department (EGLE), combined with Zillow point-level housing transaction 30 

data from 2009 to 2017. We first establish a baseline model using a traditional hedonic 31 

framework, where we regress the log of the sales price on the distance from the nearest outbreak 32 

along with a set of covariates and fixed effects and find that houses closer to outbreaks see a 33 

decline in sales price. Following Currie et al. (2015), Haninger et al. (2017), and Tanaka and 34 

Zabel (2018), we next employ a difference-in-differences (DID) model to capture the effect of 35 

recent E. coli outbreaks on the sales price of nearby houses. This DID approach mitigates the 36 

omitted variable bias and endogeneity concerns associated with the distance to E. coli outbreaks 37 

and is widely used in quantifying the value of environmental attributes.  38 

 Our main results suggest that proximity to E. coli outbreaks negatively affects housing 39 

prices, and that these effects are heterogeneous across multiple distances. After controlling for 40 

housing characteristics and spatial fixed effects, our preferred DID regressions reveal that 41 

proximity to E. coli outbreaks leads to a 8.9% price drop for houses sold during the outbreaks, 42 

 
1 https://www.michigan.gov/egle/about/organization/water-resources/assessment-michigan-
waters/e-coli-in-surface-waters 

https://www.michigan.gov/egle/about/organization/water-resources/assessment-michigan-waters/e-coli-in-surface-waters
https://www.michigan.gov/egle/about/organization/water-resources/assessment-michigan-waters/e-coli-in-surface-waters


 
 

 

which is over $13,000 for the average house. However, these effects do not persist past an 43 

interim period. 44 

This study contributes to the literature linking property values and water quality. First, it 45 

is the first to exploit a large dataset linked to waterbodies across the entire state of Michigan over 46 

more than a decade. Second, while there have been many studies that quantify the impacts of 47 

various water quality variables on housing prices, few focus on E. Coli despite its risk. Our 48 

estimates will present a baseline of comparison for future research. 49 

The remainder of this article proceeds as follows. We first review the relevant literature 50 

on hedonic analyses related to water quality and provide background information on water 51 

quality issues in Michigan. Next, we provide a description of the data used in this study, 52 

followed by a summary of the empirical models we employ. We then present the main results 53 

along with policy implications before the concluding section. 54 

2 Background  55 

Food and waterborne illnesses are one of the leading causes of morbidity worldwide, with 56 

diarrheal diseases in particular accounting for approximately 1.8 million deaths each year. 57 

Although most cases are found in developing countries, there are still about 76 million cases of 58 

foodborne illness in the U.S. each year, resulting in around 5,000 deaths annually (Ishii & 59 

Sadowsky, 2008). 60 

One of the leading causes of waterborne illnesses is the bacteria E.Coli. Although E. Coli 61 

is naturally found in the intestines of humans and animals and is typically harmless, some strands 62 

can cause severe illness or even death. Some of the most dangerous strains are thought to 63 

originate from untreated human sewage as well as animal waste (WHO, 2018). Since these 64 



 
 

 

sources can travel through runoff into nearby waterways, officials typically rely on water 65 

samples to detect dangerous levels of E. Coli. These samples are compared to water quality 66 

standards to determine if action should be taken. In Michigan, for example, the state has set a 67 

standard of a daily maximum of 300 E. Coli per 100 ml of water, or a geometric mean across 30 68 

days of no more than 130 E. Coli per 100 ml of water. As of 2024, the state of Michigan 69 

estimates that over half of Michigan’s waterbodies exceed these levels, and about 20% of 70 

monitored beaches have been closed recently due to bacterial pollution (EGLE, 2024).  71 

Regarding the Great Lakes, although Lake Michigan’s E. coli and swimming advisories have 72 

decreased in recent years, E. coli still affects more than 10% of Lake Michigan beaches and 73 

almost 90% of beaches in western Lake Erie (Weiskerger and Whitman, 2018).  74 

 There are three main mechanisms through which the state makes outbreaks public. First, 75 

when a waterbody exceeds a water quality standard, a Total Document Daily Load (TMDL) 76 

document is required by the Federal Clean Water Act. A TMDL shows the recorded levels of E. 77 

Coli, its likely sources, and possible regulatory solutions, but does not require any action to be 78 

taken.  E. Coli measurements, potentially dangerous waterbodies, and current TMDL’s are made 79 

public through EGLE’s website. The second way that E. Coli outbreaks are made public is 80 

through outdoor signs installed by the state near afflicted waterbodies. Finally, the Michigan 81 

Sellers Disclosure Act of 1993 requires sellers to notify buyers of recent environmental 82 

problems. 83 

Although Michigan tracks E. Coli levels throughout the state and warns the public of 84 

outbreaks, there are currently no Michigan laws that regulate these levels. When state 85 

governments consider potential policies, they typically undertake a cost-benefit analysis. A cost-86 

benefit analysis associated with a policy to reduce E. Coli levels requires damage estimates. One 87 



 
 

 

approach, used by the USDA Economic Research Service (ERS) in 2013 and updated in 2018, is 88 

to identify the different ways E. Coli has impacted society, estimate the dollar amount of each, 89 

and add them up. The USDA-ERS identified medical costs, productivity loss, and deaths as the 90 

main human damages due to E. Coli. The sum of the damages for the entire U.S. was close to 91 

300 million dollars  (Ahn, 2021). Another common strategy is the benefit transfer approach, 92 

which uses pre-existing estimates in one setting to predict measure of economic value in a 93 

different setting (Johnston et al., 2012). The benefit transfer approach is often used to support 94 

decision making based on cost-benefit analysis when time or funding for a new study is cost 95 

prohibitive. However, the lack of previous estimates of the economic impact E. Coli on housing 96 

prices makes this option unavailable to current decision makers.  97 

A different approach commonly used in economics is to estimate damages through stated 98 

or revealed consumer preferences. The stated preference approach uses a survey to ask, for 99 

example, if a respondent would vote for a tax intended to clean up a lake (Meyer, 2020), or if a 100 

respondent would prefer one environmental over another with different attributes. The revealed 101 

preference method, on the other hand, is based on observed data of the choices people made.  102 

One of the most common techniques in the revealed preferences literature is known as the 103 

hedonic method (Rosen, 1974). In the context of house sales, the hedonic method captures a 104 

world where buyers and sellers of new or existing houses are assumed to reach an equilibrium 105 

point where neither can be made better off without losing utility. This implies a relationship 106 

between housing prices and housing characteristics that reveal a consumer’s willingness to pay 107 

for certain housing characteristics (Bishop, et al., 2020). While these characteristics include the 108 

physical characteristics of the house, such as the number of bathrooms, they also include 109 



 
 

 

amenities and disamenities located in the region. This makes the hedonic method one of the main 110 

tools that economists have used to estimate the costs of both air and water pollution. 111 

The literature of hedonic studies related to water quality has grown over time as the 112 

availability of water quality data improved. One of the key decisions in these studies is the 113 

choice of water quality variable.  Heberling et al (2024) conducted a meta-analysis of hedonic 114 

models that use water quality and found studies based on water clarity, nutrients, sediment, 115 

biochemical factors, and bacteria. Of the studies on the effects of bacteria on housing prices, 116 

most focused on fecal coliform. For example, one of the earliest hedonic water quality studies by 117 

Leggett and Bockstael (2000) studied the effects of fecal coliform on housing prices around 118 

Chesapeake Bay and found that an increase of 100 fecal coliform counts per 100 ml produced an 119 

approximate 1.5% decrease in property prices. However, Heberling et al (2024) only found one 120 

paper that focused on the effects of E. Coli.  Netusil et al (2014) studied two watersheds in the 121 

U.S. Northwest and found that an increase of 100 count per 100 ml increase in E.Coli decreased 122 

housing prices from -.71% to -2.90% depending on the distance to the stream and the 123 

econometric model used. Our research provides an additional estimate of the effects of E.Coli on 124 

housing prices to help fill the void in this literature. 125 

The welfare effects of water pollution are particularly important to Michigan, which has 126 

long relied on its freshwater as a resource to boost economic development, whether using it to 127 

harvest natural resources, to support its manufacturing sector, or as way for transporting goods to 128 

and from the Atlantic Ocean (Steinman et al., 2017). Michigan’s Freshwater is also a major 129 

source of employment—a 2007 study estimates that 2.7 million Michigan jobs are linked to the 130 

Great Lakes (Allen-Burton et al., 2010). The state currently faces a highly fragmented 131 

wastewater policy landscape, which allocates most of the monitoring and implementation powers 132 



 
 

 

to counties and county subdivisions. As a result, decades of industrial and agricultural pollution 133 

combined with the fragmented water policy has led to several water quality issues across the 134 

state (Allen-Burton et al., 2010). Brashares (1985) studied 78 lakes in southeast Michigan and 135 

found that fecal coliform had a negative effect on the sales price of lakefront houses. Rabinovici 136 

et al. (2004) found that the closure of an average Michigan lake could create an economic loss of 137 

up to $37,000 per day based on a benefit transfer analysis. Wolf et al. (2017) found that algal 138 

blooms in Lake Erie resulted in $2.25–$5.58 million in losses to the fishing industry. To our 139 

knowledge, however, there are no papers that focus on the effects of E. Coli on housing prices in 140 

Michigan. By using home sales and water quality information across Michigan, our study fills a 141 

gap in the literature on valuing Michigan water quality, which is crucial for policymakers to 142 

design cost-effective regulation. 143 

3 Data 144 

We combine two fine-grain data sets that cover the entire state of Michigan. The first dataset we 145 

derive from Zillow residential housing transaction data for single-family homes (ZTRAX)2 from 146 

2009 to 2017. ZTRAX lists sales prices, latitude and longitude, and various housing 147 

characteristics including total bedrooms, total bathrooms, lot and building square footage, and 148 

number of stories for all properties posted on Zillow. The full dataset over 9 years includes 149 

almost half a million observations, but for our main results we drop a number of observations 150 

that may be considered outliers.  As a first step, we drop observations where the sales price was 151 

less than $10,000 to avoid “arm’s length” transactions. From this sample, we further restrict the 152 

sample to houses that have less than 10 bedrooms and/or 50 total rooms, sold for less than 153 

 
2 This database is Zillow’s Assessor and Real Estate Database (ZTRAX) accessed through a contract with Zillow. 



 
 

 

$1,000,000, and have less than 1,000,000 square feet. We also remove houses that were labeled 154 

as having zero bedrooms. The remaining subset contains 195,331 observations3. Finally, we 155 

control for housing inflation by converting sales price to 2017 dollars using the Case-Shiller 156 

home price index. 157 

The second dataset we use is EGLE’s publicly available data on E. coli point-level 158 

measurements over the same period as the housing data. The E. coli data set is geo-coded, 159 

allowing us to estimate the precise proximity of each house to an E. coli outbreak. Within the 160 

EGLE database, we drop all points whose samples were below the risk levels considered by the 161 

states. These risk thresholds are: 162 

1. 30-day geometric mean across three sample points greater than 100 E. coli/ml: OR 163 

2. Daily maximum geometric mean of greater than 300 E. coli/ml 164 

These values are slightly more restrictive than those imposed by Michigan, but in line with those 165 

used by neighboring states.  166 

  E. coli outbreaks that occur through water are typically the result of increases in rainfall 167 

or melting snow (Griffith et al., 2003; Roslev and Bukh, 2011). With a relatively low die off rate, 168 

once E. coli enters a waterway it can travel large distances away from the source through the 169 

available network of rivers and streams (Foppen et al., 2006). Between the randomness of 170 

precipitation events and the ability to travel long distances from the source, we consider E. coli 171 

outbreaks as exogenous to the sales price of a house. Figure 1 displays the correlation between 172 

house sales prices and E. Coli outbreaks throughout Michigan from 2009-2017. The highest 173 

 
3 The results for the full sample are in the appendix and do not qualitatively differ from the main results. 



 
 

 

correlation is in the lower half of the lower peninsula of Michigan, particularly near the middle.  174 

In total, there were 3,763 samples above limits throughout our ten-year study period.  175 

 176 

Figure 1: E. coli outbreaks in Michigan, 2009–2017. Note: location of houses is not 177 

displayed to protect privacy and data confidentiality.  178 

 We merge the Zillow housing transaction data with E. coli outbreak data and use ArcGIS 179 

Pro and PyCharm to calculate the nearest distance in miles from a particular house to an E. coli 180 

outbreak above the state risk thresholds that occurred after the sales date of the house. We also 181 

calculate the number of days since the outbreaks occurred. Table 1 shows the summary statistics 182 

of our variables. 183 



 
 

 

Table 1 Summary Statistics 184 

     
 Mean Std. Dev. Minimum Maximum 
Sales Price (2017 
dollars) 

151,923.2 109,119.1 10,003.7 996,604.4 

Distance from outbreak 
(miles) 

2.0 0.7 0.0 3.0 

Days Since Outbreak -423.8 1071.2 -3534.0 3118.0 
Lot Size (sq. ft.) 23,241.4 59,241.7 1011.2 991,861.0 
Rooms 3.3 3.4 0.0 37.0 
Bedrooms 3.1 0.8 1.0 10.0 
Full Bathrooms 1.5 0.7 0.0 12.0 
Stories 1.5 0.6 1.0 10.0 
Building Area (sq. ft.) 1353.2 611.6 300.0 10,199.0 
Distance to waterbody 
(meters) 

3546.4 2481.4 0.0 13,323.1 

Distance to waterbody2 1.9e+07 2.5e+07 0.0 1.8e+08 
treat 0.1 0.3 0.0 1.0 
after 0.3 0.5 0.0 1.0 
interim 0.0 0.2 0.0 1.0 
Observations 195,331    

 185 

4 Empirical Models 186 

Since Rosen’s seminal work (Rosen, 1974), the hedonic property value model has become the 187 

workhorse model to reveal the marginal values for non-market characteristics. The main idea of 188 

a hedonic model is that a product’s price represents a package of attributes- in the case of houses, 189 

this includes not only the square footage, number of bedrooms, etc., but also location specific 190 

attributes such as environmental quality. By regressing the observed sales prices on these 191 

attributes, we can recover an estimate for the marginal values for being located at various 192 

distances from an E. coli outbreak. 193 

A criticism of hedonic property values is the potential for omitted variable bias. 194 

Specifically, we are only able to control for a limited number of characteristics- even highly 195 



 
 

 

detailed housing datasets will inevitably leave out features that are valued by potential 196 

homeowners. These omitted features will be captured by the error term, and if they are correlated 197 

with E. coli outbreaks the coefficient of interest will be biased.  198 

Given the potential for omitted variable bias in a hedonic model, we next employ a 199 

difference-in-difference (DID) model. A DID model assigns houses to a control group- in our 200 

case, houses that were not affected by an E. coli outbreak- and a treatment group for houses that 201 

were affected. Although their average prices may differ before an outbreak, we assume that they 202 

are trending in a similar direction. After an E. coli outbreak, average prices for untreated houses 203 

should continue along the same trend, while treated houses will follow a different trend if E. coli 204 

outbreaks influence the price. While we prefer the DID model, we include the hedonic estimates 205 

as a point of comparison between two popular approaches in the literature. Differences between 206 

the two estimates may also point to the effect of omitted variable bias in the hedonic approach. 207 

4.1 Hedonic Property Value Model 208 

In our baseline model specification, the dependent variable 𝑦𝑦𝑖𝑖𝑖𝑖 is the log-transformed housing 209 

transaction price, adjusted by the S&P/Case-Shiller U.S. National Home Price Index to 2017 210 

dollars. We can parsimoniously write our model as: 211 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑑𝑑𝑑𝑑𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜃𝜃𝑋𝑋𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, 212 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 is the distance between house 𝑑𝑑 sold in year 𝑡𝑡 and the nearest E. coli outbreak 𝑒𝑒 213 

occurring before the sales date; 𝑑𝑑𝑑𝑑𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 is the number of days since the outbreak was reported; 214 

𝑋𝑋𝑖𝑖𝑖𝑖 is a vector containing the set of housing characteristics; 𝛼𝛼 is the intercept; and, 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 is the 215 

idiosyncratic error term. We use 𝜂𝜂𝑖𝑖 and 𝜂𝜂𝑙𝑙 to represent year and month fixed effects and school 216 

district fixed effects, respectively, which account for the time- and location-invariant unobserved 217 



 
 

 

characteristics. Finally, we use the outbreak-level fixed effect 𝜂𝜂𝑖𝑖 to capture idiosyncratic factors 218 

related to a particular outbreak. We cluster standard errors at the outbreak level. 219 

Our main parameter of interest is 𝛽𝛽1, which measures the buyers’ marginal willingness to 220 

pay for being away from an E. coli outbreak. Since we measure the distance to an E. coli 221 

outbreak as distance from (rather than the proximity to) an outbreak, we hypothesize that 𝛽𝛽 is 222 

positive, suggesting that houses further away from an E. coli outbreak would sell for a higher 223 

price. We also estimate a model that includes a quadratic functional form for distance to capture 224 

possible non-linear effects. We next employ a DID model to mitigate potential omitted variable 225 

concerns. 226 

4.2 Difference-in-Differences Model 227 

Our strategy follows the approach of Currie et al. (2015), Haninger et al. (2017), and 228 

Tanaka and Zabel (2018) in employing a DID model based on distance from the treatment, in our 229 

case an E. coli outbreak.4 Within a certain distance, houses are similar enough that we can 230 

consider them a local market, but we can still separate the market into a treatment and control 231 

group. Most E. coli outbreaks are local and we use a radius of 3 km from an E. coli outbreak to 232 

determine local neighborhoods, which is similar to Hanninger et al. (2017). The treatment group 233 

consists of houses that are particularly close to the outbreak, while houses farther away are in the 234 

control group.  235 

 
4 We attempted to use STATA to run models that use recent advances in the DID literature, including a CSDID and 
DRDID estimator, and a Goodman Bacon decomposition. However, our dataset did not match the specifications 
required for those models. 



 
 

 

Let 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 be a dummy variable that equals 1 if house 𝑑𝑑 is within this boundary and 236 

belongs to the treatment group, and 0 if the house belongs to the control group. Let 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 equal 237 

1 if a house is sold after an E. coli outbreak, and 0 if it is sold before the outbreak. We can then 238 

state the DID model as: 239 

 𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, (2) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the log of the sale price of home 𝑑𝑑 at time 𝑡𝑡, and 𝜖𝜖𝑖𝑖𝑖𝑖 is the error term that contains 240 

unobserved factors. The variable of interest, 𝛽𝛽3, captures the difference in the expected value of 241 

𝑦𝑦𝑖𝑖𝑖𝑖 for houses in the treatment group versus the expected value of 𝑦𝑦𝑖𝑖𝑖𝑖 in the control group. 242 

Specifically: 243 

 𝛽𝛽3 = �𝑇𝑇[𝑦𝑦𝑖𝑖𝑖𝑖1 �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1] − 𝑇𝑇[𝑦𝑦𝑖𝑖𝑖𝑖0 �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0]� 

−(𝑇𝑇[𝑦𝑦𝑖𝑖𝑖𝑖0 �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 0] − 𝑇𝑇[𝑃𝑃𝑖𝑖𝑖𝑖0�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 0), 

(3) 

where the superscripts equal 1 if the house is in the E. coli treatment group in the counterfactual 244 

state, and 0 if the house is in the E. coli control group in the counterfactual state. 245 

The main identifying assumption of equation (3) is the parallel trend assumption, where 246 

the sales prices leading up to an E. coli outbreak follow the same trend in both the treatment and 247 

control groups.  In figure 2 we visualize the results of an event study to investigate the validity of 248 

this assumption. This event study uses 360 day intervals to track the evolution of the coefficient 249 

of interest, before and after an E. coli outbreak.5 Ideally, the coefficient would be zero before an 250 

E.coli outbreak, which is satisfied as the 95% confidence intervals overlap the x-axis. Following 251 

 
5 We also tested this assumption for 180- and 270-day increments, which produced fairly similar results. 



 
 

 

an E. coli outbreak, we would expect negative, statistically significant coefficients. This appears 252 

to be the case for the near term, with the effect dissipating over time.  253 

 254 

Figure 2: Coefficients of the impact of E.Coli outbreaks at 360 day intervals. Day 255 

zero indicates the initial outbreak of E.Coli. Vertical lines represent 95% confident 256 

intervals. 257 

 Although figure 2 offers suggestive evidence that the parallel trends assumption is 258 

satisfied, without additional covariates to control for observable characteristics, this assumption 259 

may be too strong. As a result, we include additional covariates including housing 260 

characteristics, time and location fixed effects, and outbreak fixed effects: 261 

 𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖 +  𝜂𝜂𝑖𝑖 +  𝜂𝜂𝑖𝑖 + 𝜂𝜂𝑘𝑘

+ 𝜖𝜖𝑖𝑖𝑖𝑖. 

(4) 

To estimate the impact of E. coli outbreaks, we need to identify the treatment buffer zone 262 

in which an outbreak influences houses that are sufficiently close (TREAT= 1), while not 263 



 
 

 

influencing those that are sufficiently far away (TREAT = 0). Following Haninger et al. (2017), 264 

we first control parametrically for housing attributes, and then nonparametrically estimate 265 

housing price gradients over distance for houses close to E. coli outbreaks before and after the E. 266 

coli outbreaks separately. We then determine the distance threshold by identifying the point 267 

where these two price gradients converge using a nonparametric approach, meaning that beyond 268 

this distance, housing prices before the E. coli outbreak are not statistically different from those 269 

sold after the outbreak. If home buyers disliked the E. coli outbreaks, we should observe a lower 270 

price for houses within a distance threshold of the outbreak following that event. Moreover, we 271 

expect to see no differential patterns in housing prices outside this treatment buffer. 272 

Figure (2) plots the estimated price gradients over distance to the nearest E. coli outbreak 273 

for houses sold before and after an outbreak. As expected, the prices of houses sold after the 274 

outbreaks are noticeably lower than those before the outbreaks, up to approximately one mile 275 

away, where the 95% confidence intervals of the two price gradients start to overlap. Figure 2(b) 276 

further breaks down the sale timing as before, during, and after the outbreak, and it reveals that 277 

beyond one mile, the three confidence intervals largely overlap, especially for houses sold during 278 

and before the outbreaks. This graphical evidence suggests that E. coli outbreaks dampen nearby 279 

housing prices and provides support to our DID approach of classifying houses within and 280 

outside one mile of an outbreak as the treatment and control groups, respectively.  281 



 
 

 

 282 

 283 

Figure 3. Nonparametric estimates of housing price gradient with 95% confidence intervals 284 

for houses in Michigan sold before and after E. coli outbreaks. 285 



 
 

 

 286 

Our data on E. Coli outbreaks is unique in that the outbreak has a recorded start and end 287 

date, which we label the interim period. This period might also be thought of as the short-term 288 

effect of E. Coli on housing prices once an outbreak has been made public. In our dataset, the 289 

average interim period is about three months (86 days). Therefore, to further quantify the 290 

potential differential impacts on houses sold during versus after E. coli outbreaks we include the 291 

dummy variable INTERIM. If a house is sold in between the E. coli outbreak starts and end date 292 

for the nearest outbreak, we denote this sale as sold during the outbreak, and thus INTERIM 293 

equals 1. Our variable of interest for this scenario is an interaction term between INTERIM and 294 

TREAT, which measure the impact of outbreaks on houses within the 1 mile buffer during the 295 

interim period. In addition, we use POST = 1 to denote the houses sold after the end date of the 296 

nearest E. coli outbreak. 297 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖

+  𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖 +  𝜂𝜂𝑖𝑖 +  𝜂𝜂𝑖𝑖 + 𝜂𝜂𝑘𝑘 + 𝜖𝜖𝑖𝑖𝑖𝑖. 

(4) 

4 Results  298 

4.1 Hedonic Model Results 299 

We first present the results of the baseline hedonic property value model. Note that, for 300 

comparison, we use the same estimating sample in the hedonic regressions and DID regressions. 301 

Table (2) shows the regression coefficients for the distance to the nearest E. coli outbreak after 302 

controlling for a set of housing characteristics and various fixed effects. All three specifications 303 

use the log of housing sales prices as the dependent variable. Column (1) is a simple regression 304 



 
 

 

analysis using only the variable of interest, distance, as a control variable. Column (2) adds the 305 

distance to the waterbody and its square, days since the outbreak, housing characteristics and 306 

year by month fixed effects. Column (3) further adds school district and outbreak fixed effects. 307 

The estimated coefficient on distance from outbreak is positive in all three models, which 308 

aligns with our intuition—houses that are farther away from an outbreak sell for a higher price 309 

relative to houses that are closer. With the semi-log functional form, the magnitude of the 310 

coefficient varies from 1.39% to 3.06%, although the model with the full complement of fixed 311 

effects was not significant at the 5% level. The signs on the housing characteristics are intuitive, 312 

as increases in lot size, house size, number of bathrooms, and number of stories lead to increases 313 

in sales prices. 314 

Although the sign on distance from outbreak is intuitive, the mixed results for statistical 315 

significance, as well as the possibility of omitted variable bias, cast some doubt on the reliability 316 

of the results. In the next section we show the results for the DID model, which uses a quasi-317 

experimental method to better control for omitted variable bias. 318 

Table 2 Hedonic Model 319 

 (1) (3) (3) 
Distance from outbreak 
(miles) 

0.0304*** 0.0139*** 0.0306 

 (0.00235) (0.00231) (0.0279) 
    
Distance to waterbody 
(meters) 

 0.00000420** 0.00000293* 

  (0.00000187) (0.00000166) 
    
Distance to waterbody2  -2.54e-10 -8.85e-11 
  (1.85e-10) (1.60e-10) 
    
Days Since Outbreak  -0.0000220*** -0.00000104 
  (0.00000250) (0.00000269) 
    



 
 

 

Lot Size (sq. ft.)  0.000000840*** 0.000000908*** 
  (3.11e-08) (8.32e-08) 
    
Rooms  -0.00174*** 0.00560*** 
  (0.000522) (0.00198) 
    
Bedrooms  0.00976*** 0.0105 
  (0.00272) (0.0120) 
    
Full Bathrooms  0.240*** 0.177*** 
  (0.00313) (0.0136) 
    
Stories  0.0220*** 0.0298*** 
  (0.00278) (0.0108) 
    
Building Area (sq. ft.)  0.000388*** 0.000285*** 
  (0.00000372) (0.0000190) 
Observations 195331 160324 160304 
Adjusted R2 0.001 0.276 0.446 
Year/Month FE No Yes Yes 
School District FE No No Yes 
Outbreak FE   Yes 

* p < 0.05, ** p < 0.01, *** p < 0.001. Robust standard errors in parenthesis. 320 

 321 

4.2 Difference-in-Differences Results 322 

Table (3) shows the regression results for three specifications of the DID model. In this 323 

model, we keep all observations before and after an outbreak, as opposed to the hedonic model in 324 

which we only keep post-outbreak observations. However, we subset the data for the DID model 325 

to a radius of three miles around each outbreak to keep the neighborhoods and houses relatively 326 

homogeneous between treatment and control groups. We define the treatment observations as 327 

houses within a one-mile radius from the outbreak, while the control observations are between 328 

one and three miles from the outbreak.  329 

We again start with a parsimonious baseline model to evaluate the evolution of the 330 

coefficient of interest (Treat * Post) (as we control for additional factors). Since the E. coli 331 



 
 

 

dataset includes a “start” and “end” date for the E. coli outbreak, we also include an interaction 332 

between Treat and a dummy variable interim that equals 1 if the house sale was between the start 333 

and end date, and 0 if it was not. 334 

Table 3 Difference-in-Difference Results 335 
 

(1) (2) (3) 

treat -0.0621*** -0.0265*** -0.0215***  

(0.00676) (0.00701) (0.00609) 

post 0.00912** 0.0157** 0.0433***  

(0.00367) (0.00612) (0.00547) 

treat*post 0.0468*** 0.00847 -0.0140  

(0.0108) (0.0107) (0.00960) 

interim 0.0700*** -0.00688 0.0447***  

(0.00910) (0.00899) (0.00841) 

treat*interim 0.0263 -0.0165 -0.0894***  

(0.0275) (0.0262) (0.0250) 

Days Since Outbreak 

 

-0.0000272*** -0.0000177***   

(0.00000331) (0.00000550) 

Distance to waterbody (m) 

 

0.00000422** 0.00000287*   

(0.00000187) (0.00000163) 

Distance to waterbody squared (m) 

 

-2.55e-10 -8.10e-11   

(1.85e-10) (1.63e-10) 

Constant 11.69*** 10.45*** 10.91***  

(0.00237) (0.0137) (0.0783) 

Observations 195,331 160,324 160,304 



 
 

 

Housing Characteristics Yes Yes Yes 

Adjusted R2 0.001 0.276 0.446 

Year/Month FE No Yes Yes 

School District FE No No Yes 

Outbreak FE 

  

Yes 

          * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. 336 

          In Table 3, Column (1) shows the results for the simple DID model. The coefficient on 337 

treat is negative and statistically significant (p < .01).   Column (2) further controls for housing 338 

characteristics, days since the outbreak, and year and month fixed effects. Column (3) adds fixed 339 

effects for school districts and outbreaks. Based on our preferred specification in column (3), the 340 

coefficient on (Treat * Post) is -0.0104 but is not statistically significant. However, the 341 

coefficient on (Treat*Interim), at -0.0894 and is statistically significant (𝑝𝑝 < .01). These two 342 

results imply that housing first prices see an immediate decrease of 8.94% following an E. Coli 343 

outbreak, but the decrease in prices is not permanent (since treat*post is not significant). In our 344 

sample the average house sells for $151,923, therefore an estimate of the average decrease in 345 

housing prices during the interim period is $13,582.  346 

4.3 Robustness Checks 347 

Recall that our results from table (3) used a cutoff radius of 1 mile. That is, every house within a 348 

mile of the outbreak was considered “treatment”, while every house between 1 and 3 miles was 349 

considered “non-treatment”. Table (4) shows the results for models that varies this cutoff. 350 

Column (1) uses a slightly smaller radius of 0.9 miles, while columns (2) and (3) use a radius of 351 

1.1 and 1.2 miles, respectively. With the smaller radius, the model does not pick up the long-352 

term effects of an E. coli outbreak, with the coefficient on TREAT*POST not significant. 353 



 
 

 

However, models with a 1.1- and 1.2-mile cutoff showed a statistically significant coefficient on 354 

TREAT*POST at the 10% and 5% significance level, respectively. On the other hand, the short-355 

term effect of E.coli on housing prices, captured by the variable TREAT*INTERIM, are 356 

significant regardless across all models (p < .01). The value of the coefficients imply a decrease 357 

in house sales prices of 7.46% to 8.65%, which are close to our estimate of 8.94% in table (3). 358 

Table 4 Robustness Checks 359 

  (1) (2) (3) 

    

Treated group 
definition 

Dist. to E Coli 
outbreak < 0.9 mile 

Dist. to E Coli 
outbreak < 1.1 mile 

Dist. to E Coli 
outbreak < 1.2 mile 

treat -0.0418*** -0.00952* -0.00808 

  (0.00665) (0.00564) (0.00528) 

post 0.0419*** 0.0438*** 0.0449*** 

  (0.00545) (0.00550) (0.00553) 

treat*post -0.00153 -0.0151* -0.0203** 

  (0.0106) (0.00884) (0.00827) 

interim 0.0421*** 0.0462*** 0.0466*** 

  (0.00834) (0.00850) (0.00860) 

treat*interim -0.0764*** -0.0865*** -0.0746*** 

  (0.0274) (0.0229) (0.0212) 

Days Since 
Outbreak 

-0.0000177*** -0.0000176*** -0.0000176*** 

  (0.00000550) (0.00000550) (0.00000550) 

Distance to 
waterbody (m) 

0.00000284* 0.00000286* 0.00000287* 



 
 

 

 

(0.00000163) (0.00000163) (0.00000163) 

Distance to 
waterbody2 (m) 

-8.02e-11 -8.03e-11 -8.01e-11 

  (1.63e-10) (1.63e-10) (1.63e-10) 

Constant 10.91*** 10.91*** 10.91*** 

  (0.0783) (0.0783) (0.0783) 

Observations 160,304 160,304 160,304 

Housing 
Characteristics 

Yes Yes Yes 

Adjusted R2 0.446 0.446 0.446 

Year/Month FE Yes Yes Yes 

School District FE Yes Yes Yes 

Outbreak FE Yes Yes Yes 

  * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. 360 

An additional consideration is the source of water for each house. Although our dataset 361 

did not include this information, we attempted to proxy for it using several methods. First, we 362 

used a subset of houses that were within 1 mile of the Great Lakes. With the DID framework, we 363 

found a long-term impact of approximately -11%. We also ran a model with county fixed effects 364 

instead of school district fixed effects, which gave similar results to the main model.6 365 

5 Conclusions and Discussion 366 

In this article, we use point-level data and a quasi-experimental design along with a 367 

standard linear hedonic model to estimate the effects that proximity to an E. coli outbreak 368 

 
6 These results are available upon request. 



 
 

 

exercises on housing prices. Our results show that E. coli outbreaks negatively affect housing 369 

prices by at least 8.9% for houses within one mile of the outbreak. However, these effects are 370 

very sensitive to time, and they decrease as days pass from the last outbreak affecting the 371 

transaction. The combination of these two factors possibly signals a lack of ‘memory’ by market 372 

actors, who tend to discount the effects of the outbreaks and/or their recursiveness once levels 373 

return to safe parameters. These results have several other implications for future state and local 374 

governments, both in Michigan and across the Great Lakes region. 375 

Given the size of the damages by these recurring outbreaks, it may be cost-effective to 376 

design and implement policies addressing future outbreaks, especially in a state like Michigan, 377 

where water-related activities play a major social and economic role. Currently, there is no 378 

statewide TMDL for E. coli.7 Instead, it is up to local municipalities to set regulations, which 379 

may result in conflicting policies and inefficient societal outcomes. Estimates such as ours can be 380 

beneficial for policymakers in assessing the costs and benefits of a statewide approach. 381 

The policies of neighboring Midwest states demonstrate a range of policy options. In 382 

2016, Ohio set revised statewide E. coli standards for wastewater discharge permits. These 383 

standards vary by recreational use of the receiving stream—bathing, swimming, and other 384 

primary uses cannot exceed a 90-day geometric mean of 126, while other uses that involve 385 

minimal contact cannot exceed a 90-day geometric mean of 1,030. Wisconsin seems to be 386 

moving in a similar direction as Ohio (Kaeding and The Associated Press, 2019). Indiana 387 

monitors water bodies for E. coli, but only provides information to local entities to develop 388 

 
7 See "https://www.michigan.gov/egle/0,9429,7-135-3313_3681_3686_3728-376271--,00.htmlfor more information on 
statewide efforts to implement a TMDL. 



 
 

 

pollution reduction plans. Unfortunately, there is little research into the effectiveness of each 389 

policy, providing opportunities for future research. 390 

Although we controlled as many factors as the data allowed, our results may be 391 

influenced by omitted variable bias. As the first estimate of the effect of E. Coli outbreaks on 392 

housing in Michigan, it is difficult to gauge how realistic the estimates are. Research using 393 

alternative statistical methods or updated data will help place our estimates in context. One 394 

possibility is for future researchers to separate waterbodies by type. Waterfront properties on the 395 

Great Lakes (Lake Michigan, Lake Huron, Lake Superior) may capture further benefits despite 396 

being subject to the effects of E. coli (see e.g., Colwell and Dehring, 2005; Wyman et al., 2020). 397 

In addition, communication of outbreaks to the public varies substantially across the state; thus, 398 

potential buyers may have been privy to information about the outbreaks prior to purchasing the 399 

property, while those buyers who are less inclined to purchase houses near outbreaks may simply 400 

look elsewhere ex-ante. 401 

  402 
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Appendix 490 

Full sample results 491 

The main results of the paper come from a subsample of Zillow housing prices. Table (5) shows 492 

the results using the full sample. 493 

https://doi.org/10.1016/j.scitotenv.2017.11.167


 
 

 

Table 5 DID results 494 

 (1) (2) (3) 

Treat=1 0.0476*** -0.0194** -0.0470*** 

 (0.00634) (0.00652) (0.00513) 

    

Post=1 0.0672*** 0.00661 0.0330*** 

 (0.00270) (0.00519) (0.00451) 

    

Treat*Post -0.0629*** -0.0382*** -0.0203* 

 (0.00896) (0.00924) (0.00788) 

    

Interim=1 0.107*** -0.0172* 0.0344*** 

 (0.00799) (0.00811) (0.00718) 

    

Treat*Interim 0.0963** -0.0540* -0.0492* 

 (0.0333) (0.0261) (0.0209) 

    

Days Since Outbreak  0.0000294*** -0.0000120** 

  (0.00000276) (0.00000461) 

    

Lot Size (sq. ft.)  6.01e-09 3.87e-09*** 

  (3.17e-09) (8.09e-10) 

    



 
 

 

Bedrooms  0.0293*** 0.00770*** 

  (0.000968) (0.000866) 

    

Bathrooms  0.311*** 0.158*** 

  (0.00324) (0.00181) 

    

Stories  0.0805*** 0.0529*** 

  (0.00332) (0.00196) 

    

Building Area (sq. ft.)  0.0000337*** 0.0000279*** 

  (0.00000523) (0.000000196) 

    

    

Observations 471,535 341,584 341,546 

Adjusted R2 0.002 0.160 0.377 

Year/Month FE No Yes Yes 

School District FE No No Yes 

Outbreak FE No No Yes 

Standard errors in parentheses. 495 

* p < 0.05, ** p < 0.01, *** p < 0.001 496 
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